Central European precipitation and temperature extremes in relation to large-scale atmospheric circulation types

2009 ◽  
Vol 18 (4) ◽  
pp. 397-410 ◽  
Author(s):  
Jucundus Jacobeit ◽  
Joachim Rathmann ◽  
Aandreas Philipp ◽  
Philip D. Jones
2012 ◽  
Vol 12 (5) ◽  
pp. 1671-1691 ◽  
Author(s):  
C. Andrade ◽  
S. M. Leite ◽  
J. A. Santos

Abstract. As temperature extremes have a deep impact on environment, hydrology, agriculture, society and economy, the analysis of the mechanisms underlying their occurrence, including their relationships with the large-scale atmospheric circulation, is particularly pertinent and is discussed here for Europe and in the period 1961–2010 (50 yr). For this aim, a canonical correlation analysis, coupled with a principal component analysis (BPCCA), is applied between the monthly mean sea level pressure fields, defined within a large Euro-Atlantic sector, and the monthly occurrences of two temperature extreme indices (TN10p – cold nights and TX90p – warm days) in Europe. Each co-variability mode represents a large-scale forcing on the occurrence of temperature extremes. North Atlantic Oscillation-like patterns and strong anomalies in the atmospheric flow westwards of the British Isles are leading couplings between large-scale atmospheric circulation and winter, spring and autumn occurrences of both cold nights and warm days in Europe. Although summer couplings depict lower coherence between warm and cold events, important atmospheric anomalies are key driving mechanisms. For a better characterization of the extremes, the main features of the statistical distributions of the absolute minima (TNN) and maxima (TXX) are also examined for each season. Furthermore, statistically significant downward (upward) trends are detected in the cold night (warm day) occurrences over the period 1961–2010 throughout Europe, particularly in summer, which is in clear agreement with the overall warming.


2020 ◽  
Vol 33 (3) ◽  
pp. 847-865 ◽  
Author(s):  
B. Yu ◽  
H. Lin ◽  
V. V. Kharin ◽  
X. L. Wang

AbstractThe interannual variability of wintertime North American surface temperature extremes and its generation and maintenance are analyzed in this study. The leading mode of the temperature extreme anomalies, revealed by empirical orthogonal function (EOF) analyses of December–February mean temperature extreme indices over North America, is characterized by an anomalous center of action over western-central Canada. In association with the leading mode of temperature extreme variability, the large-scale atmospheric circulation features an anomalous Pacific–North American (PNA)-like pattern from the preceding fall to winter, which has important implications for seasonal prediction of North American temperature extremes. A positive PNA pattern leads to more warm and fewer cold extremes over western-central Canada. The anomalous circulation over the PNA sector drives thermal advection that contributes to temperature anomalies over North America, as well as a Pacific decadal oscillation (PDO)-like sea surface temperature (SST) anomaly pattern in the midlatitude North Pacific. The PNA-like circulation anomaly tends to be supported by SST warming in the tropical central-eastern Pacific and a positive synoptic-scale eddy vorticity forcing feedback on the large-scale circulation over the PNA sector. The leading extreme mode–associated atmospheric circulation patterns obtained from the observational and reanalysis data, together with the anomalous SST and synoptic eddy activities, are reasonably well simulated in most CMIP5 models and in the multimodel mean. For most models considered, the simulated patterns of atmospheric circulation, SST, and synoptic eddy activities have lower spatial variances than the corresponding observational and reanalysis patterns over the PNA sector, especially over the North Pacific.


Sign in / Sign up

Export Citation Format

Share Document