Interannual Variability of North American Winter Temperature Extremes and Its Associated Circulation Anomalies in Observations and CMIP5 Simulations

2020 ◽  
Vol 33 (3) ◽  
pp. 847-865 ◽  
Author(s):  
B. Yu ◽  
H. Lin ◽  
V. V. Kharin ◽  
X. L. Wang

AbstractThe interannual variability of wintertime North American surface temperature extremes and its generation and maintenance are analyzed in this study. The leading mode of the temperature extreme anomalies, revealed by empirical orthogonal function (EOF) analyses of December–February mean temperature extreme indices over North America, is characterized by an anomalous center of action over western-central Canada. In association with the leading mode of temperature extreme variability, the large-scale atmospheric circulation features an anomalous Pacific–North American (PNA)-like pattern from the preceding fall to winter, which has important implications for seasonal prediction of North American temperature extremes. A positive PNA pattern leads to more warm and fewer cold extremes over western-central Canada. The anomalous circulation over the PNA sector drives thermal advection that contributes to temperature anomalies over North America, as well as a Pacific decadal oscillation (PDO)-like sea surface temperature (SST) anomaly pattern in the midlatitude North Pacific. The PNA-like circulation anomaly tends to be supported by SST warming in the tropical central-eastern Pacific and a positive synoptic-scale eddy vorticity forcing feedback on the large-scale circulation over the PNA sector. The leading extreme mode–associated atmospheric circulation patterns obtained from the observational and reanalysis data, together with the anomalous SST and synoptic eddy activities, are reasonably well simulated in most CMIP5 models and in the multimodel mean. For most models considered, the simulated patterns of atmospheric circulation, SST, and synoptic eddy activities have lower spatial variances than the corresponding observational and reanalysis patterns over the PNA sector, especially over the North Pacific.

Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 172 ◽  
Author(s):  
Bin Yu ◽  
Hai Lin ◽  
Nicholas Soulard

The atmospheric teleconnection pattern reflects large-scale variations in the atmospheric wave and jet stream, and has pronounced impacts on climate mean and extremes over various regions. This study compares those patterns that have significant circulation anomalies over the North Pacific–North American–North Atlantic sector, which directly influence surface temperature and temperature extremes over North America. We analyze the pattern associated anomalies of surface temperature and warm and cold extremes over North America, during the northern winter and summer seasons. In particular, we assess the robustness of the regional temperature and temperature extreme anomaly patterns by evaluating the field significance of these anomalies over North America, and quantify the percentages of North American temperature and temperature extreme variances explained by these patterns. The surface temperature anomalies in association with the Pacific–North American pattern (PNA), Tropical–Northern Hemisphere pattern (TNH), North Pacific pattern (NP), North Atlantic Oscillation (NAO), Arctic Oscillation (AO), Western Pacific pattern (WP), circumglobal teleconnection (CGT), and Asian–Bering–North American (ABNA) patterns are similar to those reported in previous studies based on various datasets, indicating the robustness of the results. During winter, the temperature anomaly patterns considered are field significant at the 5% level over North America, except the WP-related one. These pattern associated anomalies explained about 5–15% of the total interannual temperature variance over North America, with relatively high percentages for the ABNA and PNA patterns, and low for the WP pattern. The pattern associated warm and cold extreme anomalies resemble the corresponding surface mean temperature anomaly patterns, with differences mainly in magnitude of the anomalies. Most of the anomalous extreme patterns are field significant at the 5% level, except the WP-related patterns. These extreme anomalies explain about 5–20% of the total interannual variance over North America. During summer, the pattern-related circulation and surface temperature anomalies are weaker than those in winter. Nevertheless, all of the pattern associated temperature anomalies are of field significance at the 5% level over North America, except the PNA-related one, and explain about 5–10% of the interannual variance. In addition, the temperature extreme anomalies, in association with the circulation patterns, are comparable in summer and winter. Over North America, the NP-, WP-, ABNA-, and CGT-associated anomalies of warm extremes are field significant at the 5% level and explain about 5–15% of the interannual variance. Most of the pattern associated cold extreme anomalies are field significant at the 5% level, except the PNA and NAO related anomalies, and also explain about 5–15% of the interannual variance over North America.


2019 ◽  
Vol 32 (19) ◽  
pp. 6271-6284 ◽  
Author(s):  
Xiaofan Li ◽  
Zeng-Zhen Hu ◽  
Ping Liang ◽  
Jieshun Zhu

Abstract In this work, the roles of El Niño–Southern Oscillation (ENSO) in the variability and predictability of the Pacific–North American (PNA) pattern and precipitation in North America in winter are examined. It is noted that statistically about 29% of the variance of PNA is linearly linked to ENSO, while the remaining 71% of the variance of PNA might be explained by other processes, including atmospheric internal dynamics and sea surface temperature variations in the North Pacific. The ENSO impact is mainly meridional from the tropics to the mid–high latitudes, while a major fraction of the non-ENSO variability associated with PNA is confined in the zonal direction from the North Pacific to the North American continent. Such interferential connection on PNA as well as on North American climate variability may reflect a competition between local internal dynamical processes (unpredictable fraction) and remote forcing (predictable fraction). Model responses to observed sea surface temperature and model forecasts confirm that the remote forcing is mainly associated with ENSO and it is the major source of predictability of PNA and winter precipitation in North America.


2020 ◽  
Vol 33 (6) ◽  
pp. 2427-2447 ◽  
Author(s):  
Nathaniel C. Johnson ◽  
Lakshmi Krishnamurthy ◽  
Andrew T. Wittenberg ◽  
Baoqiang Xiang ◽  
Gabriel A. Vecchi ◽  
...  

AbstractPositive precipitation biases over western North America have remained a pervasive problem in the current generation of coupled global climate models. These biases are substantially reduced, however, in a version of the Geophysical Fluid Dynamics Laboratory Forecast-Oriented Low Ocean Resolution (FLOR) coupled climate model with systematic sea surface temperature (SST) biases artificially corrected through flux adjustment. This study examines how the SST biases in the Atlantic and Pacific Oceans contribute to the North American precipitation biases. Experiments with the FLOR model in which SST biases are removed in the Atlantic and Pacific are carried out to determine the contribution of SST errors in each basin to precipitation statistics over North America. Tropical and North Pacific SST biases have a strong impact on northern North American precipitation, while tropical Atlantic SST biases have a dominant impact on precipitation biases in southern North America, including the western United States. Most notably, negative SST biases in the tropical Atlantic in boreal winter induce an anomalously strong Aleutian low and a southward bias in the North Pacific storm track. In boreal summer, the negative SST biases induce a strengthened North Atlantic subtropical high and Great Plains low-level jet. Each of these impacts contributes to positive annual mean precipitation biases over western North America. Both North Pacific and North Atlantic SST biases induce SST biases in remote basins through dynamical pathways, so a complete attribution of the effects of SST biases on precipitation must account for both the local and remote impacts.


2012 ◽  
Vol 25 (20) ◽  
pp. 7266-7281 ◽  
Author(s):  
Paul C. Loikith ◽  
Anthony J. Broccoli

Abstract Motivated by a desire to understand the physical mechanisms involved in future anthropogenic changes in extreme temperature events, the key atmospheric circulation patterns associated with extreme daily temperatures over North America in the current climate are identified. The findings show that warm extremes at most locations are associated with positive 500-hPa geopotential height and sea level pressure anomalies just downstream with negative anomalies farther upstream. The orientation, physical characteristics, and spatial scale of these circulation patterns vary based on latitude, season, and proximity to important geographic features (i.e., mountains, coastlines). The anomaly patterns associated with extreme cold events tend to be similar to, but opposite in sign of, those associated with extreme warm events, especially within the westerlies, and tend to scale with temperature in the same locations. Circulation patterns aloft are more coherent across the continent than those at the surface where local surface features influence the occurrence of and patterns associated with extreme temperature days. Temperature extremes may be more sensitive to small shifts in circulation at locations where temperature is strongly influenced by mountains or large water bodies, or at the margins of important large-scale circulation patterns making such locations more susceptible to nonlinear responses to future climate change. The identification of these patterns and processes will allow for a thorough evaluation of the ability of climate models to realistically simulate extreme temperatures and their future trends.


2015 ◽  
Vol 28 (9) ◽  
pp. 3834-3845 ◽  
Author(s):  
Thomas L. Delworth ◽  
Fanrong Zeng ◽  
Anthony Rosati ◽  
Gabriel A. Vecchi ◽  
Andrew T. Wittenberg

Abstract Portions of western North America have experienced prolonged drought over the last decade. This drought has occurred at the same time as the global warming hiatus—a decadal period with little increase in global mean surface temperature. Climate models and observational analyses are used to clarify the dual role of recent tropical Pacific changes in driving both the global warming hiatus and North American drought. When observed tropical Pacific wind stress anomalies are inserted into coupled models, the simulations produce persistent negative sea surface temperature anomalies in the eastern tropical Pacific, a hiatus in global warming, and drought over North America driven by SST-induced atmospheric circulation anomalies. In the simulations herein the tropical wind anomalies account for 92% of the simulated North American drought during the recent decade, with 8% from anthropogenic radiative forcing changes. This suggests that anthropogenic radiative forcing is not the dominant driver of the current drought, unless the wind changes themselves are driven by anthropogenic radiative forcing. The anomalous tropical winds could also originate from coupled interactions in the tropical Pacific or from forcing outside the tropical Pacific. The model experiments suggest that if the tropical winds were to return to climatological conditions, then the recent tendency toward North American drought would diminish. Alternatively, if the anomalous tropical winds were to persist, then the impact on North American drought would continue; however, the impact of the enhanced Pacific easterlies on global temperature diminishes after a decade or two due to a surface reemergence of warmer water that was initially subducted into the ocean interior.


2021 ◽  
Vol 675 ◽  
pp. 1-21
Author(s):  
MA Ito ◽  
HJ Lin ◽  
MI O’Connor ◽  
M Nakaoka

Large-scale analysis along latitude or temperature gradients can be an effective method for exploring the potential roles of light and temperature in controlling seagrass phenology. In this study, we investigated effects of latitude and temperature on seagrass biomass and reproductive seasonality. Zostera japonica is an intertidal seagrass with a wide latitudinal distribution expanding from tropical to temperate zones in its native range in Asia, with an additional non-native distribution in North America. We collated available data on phenological traits (timings of peak biomass or reproduction, durations of biomass growth and reproductive season, and maximum biomass or reproductive ratio) from publications and our own observations. Traits were compared among geographic groups: Asia-tropical, Asia-temperate, and North America-temperate. We further examined relationships between traits and latitude and temperature for 3 population groups: Asian, North American, and all populations. Our analysis revealed significant variation among geographic groups in maximum biomass, peak reproductive timing, and maximum reproductive ratio, but not in other traits. Maximum biomass and peak reproductive timing for Asian and all populations were significantly correlated with latitude and temperature. Maximum biomass was highest at mid-latitudes or intermediate temperatures and decreased toward distribution range limits, and peak reproductive timing occurred later in the year at higher latitudes or cooler sites. North American populations showed shorter growth durations and greater reproductive ratios at higher latitude. Different responses observed for North American populations may reflect effects of introduction. Our study demonstrates potential variation among geographic regions and between native and non-native populations.


Sign in / Sign up

Export Citation Format

Share Document