scholarly journals Temperature extremes in Europe and wintertime large-scale atmospheric circulation: HadCM3 future scenarios

2006 ◽  
Vol 31 ◽  
pp. 3-18 ◽  
Author(s):  
J Santos ◽  
J Corte-Real
2012 ◽  
Vol 12 (5) ◽  
pp. 1671-1691 ◽  
Author(s):  
C. Andrade ◽  
S. M. Leite ◽  
J. A. Santos

Abstract. As temperature extremes have a deep impact on environment, hydrology, agriculture, society and economy, the analysis of the mechanisms underlying their occurrence, including their relationships with the large-scale atmospheric circulation, is particularly pertinent and is discussed here for Europe and in the period 1961–2010 (50 yr). For this aim, a canonical correlation analysis, coupled with a principal component analysis (BPCCA), is applied between the monthly mean sea level pressure fields, defined within a large Euro-Atlantic sector, and the monthly occurrences of two temperature extreme indices (TN10p – cold nights and TX90p – warm days) in Europe. Each co-variability mode represents a large-scale forcing on the occurrence of temperature extremes. North Atlantic Oscillation-like patterns and strong anomalies in the atmospheric flow westwards of the British Isles are leading couplings between large-scale atmospheric circulation and winter, spring and autumn occurrences of both cold nights and warm days in Europe. Although summer couplings depict lower coherence between warm and cold events, important atmospheric anomalies are key driving mechanisms. For a better characterization of the extremes, the main features of the statistical distributions of the absolute minima (TNN) and maxima (TXX) are also examined for each season. Furthermore, statistically significant downward (upward) trends are detected in the cold night (warm day) occurrences over the period 1961–2010 throughout Europe, particularly in summer, which is in clear agreement with the overall warming.


2020 ◽  
Vol 33 (3) ◽  
pp. 847-865 ◽  
Author(s):  
B. Yu ◽  
H. Lin ◽  
V. V. Kharin ◽  
X. L. Wang

AbstractThe interannual variability of wintertime North American surface temperature extremes and its generation and maintenance are analyzed in this study. The leading mode of the temperature extreme anomalies, revealed by empirical orthogonal function (EOF) analyses of December–February mean temperature extreme indices over North America, is characterized by an anomalous center of action over western-central Canada. In association with the leading mode of temperature extreme variability, the large-scale atmospheric circulation features an anomalous Pacific–North American (PNA)-like pattern from the preceding fall to winter, which has important implications for seasonal prediction of North American temperature extremes. A positive PNA pattern leads to more warm and fewer cold extremes over western-central Canada. The anomalous circulation over the PNA sector drives thermal advection that contributes to temperature anomalies over North America, as well as a Pacific decadal oscillation (PDO)-like sea surface temperature (SST) anomaly pattern in the midlatitude North Pacific. The PNA-like circulation anomaly tends to be supported by SST warming in the tropical central-eastern Pacific and a positive synoptic-scale eddy vorticity forcing feedback on the large-scale circulation over the PNA sector. The leading extreme mode–associated atmospheric circulation patterns obtained from the observational and reanalysis data, together with the anomalous SST and synoptic eddy activities, are reasonably well simulated in most CMIP5 models and in the multimodel mean. For most models considered, the simulated patterns of atmospheric circulation, SST, and synoptic eddy activities have lower spatial variances than the corresponding observational and reanalysis patterns over the PNA sector, especially over the North Pacific.


2017 ◽  
Vol 8 (4) ◽  
pp. 963-976 ◽  
Author(s):  
Jaak Jaagus ◽  
Mait Sepp ◽  
Toomas Tamm ◽  
Arvo Järvet ◽  
Kiira Mõisja

Abstract. Time series of monthly, seasonal and annual mean air temperature, precipitation, snow cover duration and specific runoff of rivers in Estonia are analysed for detecting of trends and regime shifts during 1951–2015. Trend analysis is realised using the Mann–Kendall test and regime shifts are detected with the Rodionov test (sequential t-test analysis of regime shifts). The results from Estonia are related to trends and regime shifts in time series of indices of large-scale atmospheric circulation. Annual mean air temperature has significantly increased at all 12 stations by 0.3–0.4 K decade−1. The warming trend was detected in all seasons but with the higher magnitude in spring and winter. Snow cover duration has decreased in Estonia by 3–4 days decade−1. Changes in precipitation are not clear and uniform due to their very high spatial and temporal variability. The most significant increase in precipitation was observed during the cold half-year, from November to March and also in June. A time series of specific runoff measured at 21 stations had significant seasonal changes during the study period. Winter values have increased by 0.4–0.9 L s−1 km−2 decade−1, while stronger changes are typical for western Estonia and weaker changes for eastern Estonia. At the same time, specific runoff in April and May have notably decreased indicating the shift of the runoff maximum to the earlier time, i.e. from April to March. Air temperature, precipitation, snow cover duration and specific runoff of rivers are highly correlated in winter determined by the large-scale atmospheric circulation. Correlation coefficients between the Arctic Oscillation (AO) and North Atlantic Oscillation (NAO) indices reflecting the intensity of westerlies, and the studied variables were 0.5–0.8. The main result of the analysis of regime shifts was the detection of coherent shifts for air temperature, snow cover duration and specific runoff in the late 1980s, mostly since the winter of 1988/1989, which are, in turn, synchronous with the shifts in winter circulation. For example, runoff abruptly increased in January, February and March but decreased in April. Regime shifts in annual specific runoff correspond to the alternation of wet and dry periods. A dry period started in 1964 or 1963, a wet period in 1978 and the next dry period at the beginning of the 21st century.


Sign in / Sign up

Export Citation Format

Share Document