A measurement based analysis of the spatial distribution, temporal variation and chemical composition of particulate matter in Munich and Augsburg

2011 ◽  
Vol 20 (1) ◽  
pp. 47-57 ◽  
Author(s):  
Klaus Schäfer ◽  
Stefan Emeis ◽  
Stefanie Schrader ◽  
Szabina Török ◽  
Balint Alföldy ◽  
...  
2002 ◽  
Vol 51 (3-4) ◽  
pp. 233-241 ◽  
Author(s):  
Barak Herut ◽  
Ittai Gavrieli ◽  
Ludwik Halicz ◽  
Gideon Tibora

Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 62
Author(s):  
Robert Cichowicz ◽  
Maciej Dobrzański

Spatial analysis of the distribution of particulate matter PM10, PM2.5, PM1.0, and hydrogen sulfide (H2S) gas pollution was performed in the area around a university library building. The reasons for the subject matter were reports related to the perceptible odor characteristic of hydrogen sulfide and a general poor assessment of air quality by employees and students. Due to the area of analysis, it was decided to perform measurements at two heights, 10 m and 20 m above ground level, using measuring equipment attached to a DJI Matrice 600 unmanned aerial vehicle (UAV). The aim of the measurements was air quality assessment and investigate the convergence of the theory of air flow around the building with the spatial distribution of air pollutants. Considerable differences of up to 63% were observed in the concentrations of pollutants measured around the building, especially between opposite sides, depending on the direction of the wind. To explain these differences, the theory of aerodynamics was applied to visualize the probable airflow in the direction of the wind. A strong convergence was observed between the aerodynamic model and the spatial distribution of pollutants. This was evidenced by the high concentrations of dust in the areas of strong turbulence at the edges of the building and on the leeward side. The accumulation of pollutants was also clearly noticeable in these locations. A high concentration of H2S was recorded around the library building on the side of the car park. On the other hand, the air turbulence around the building dispersed the gas pollution, causing the concentration of H2S to drop on the leeward side. It was confirmed that in some analyzed areas the permissible concentration of H2S was exceeded.


2018 ◽  
Vol 30 (0) ◽  
Author(s):  
Josiane Souza Santos ◽  
Nadson Ressyé Simões ◽  
Sérgio Luiz Sonoda

Abstract Aim: The objective of this study was to investigate the spatial and temporal variation of microcrustacean assemblages of a reservoir in the Brazilian semiarid region. Methods Physical and chemical water variables and samples of microcrustaceans were collected at eight sites of the reservoir between July 2013 and November 2014, in a total of seven campaigns. For this study, the reservoir was categorized in two compartments: lateral and central. Results Limnological variables showed significant temporal variation (PERMANOVA, Pseudo-F = 19.51, p = 0.001). Higher turbidity values and suspended solids were observed in the rainiest months, while during the dry months, we measured higher values of transparency, dissolved oxygen, and chlorophyll-a. It was not found significant spatial variation of limnological variables (PERMANOVA, Pseudo-F = 0.96; p = 0.394). During the study period, ten species were recorded: four Cladocera (Ceriodaphnia cornuta, Daphnia gessneri, Diaphanosoma birgei and Diaphanosoma spinulosum ) three Copepoda Calanoida (Argyrodiaptomus azevedoi, Notodiaptomus cearensis and Notodiaptomus iheringi) and three Copepoda Cyclopoida (Macrocyclops albidus, Thermocyclops minutus and Thermocyclops decipiens). The microcrustacean assemblages showed significant temporal variation (PERMANOVA, Pseudo-F = 4.34; p = 0.001) as well as significant spatial variation (PERMANOVA, Pseudo-F = 9.46; p = 0.001). The highest values of abundance and richness were observed in the lateral compartment, this result is mainly related to the presence of aquatic macrophytes in this region, because the analysis of partial RDA indicated that limnological variables explained only 11% of this variation (Pseudo-F = 2.08, p = 0.001). Conclusions The results suggest that the seasonality of the semiarid is an important factor in the temporal dynamics of the limnological variables, while the aquatic macrophytes play an important role in the spatial distribution of the microcrustacean assembly.


2019 ◽  
Vol 12 (11) ◽  
pp. 1267-1277 ◽  
Author(s):  
Alberto A. Espinosa ◽  
Javier Miranda ◽  
Enrique Hernández ◽  
Javier Reyes ◽  
Ana L. Alarcón ◽  
...  

2019 ◽  
Vol 118 ◽  
pp. 04027
Author(s):  
Hongjin Tong ◽  
Sha Liu ◽  
Ruixue Liao ◽  
Xiaomei Wei ◽  
Kangli Che ◽  
...  

The previous characteristics researches of air pollution were almost based on data from national environmental monitoring stations in 2015. The temporal variation curves of air pollutants and the ArcGIS grid interpolation method were used to analyze the spatial-temporal variation of air pollutants in five cities of Chengdu economic region. In 2015, the monthly change trends of PM2.5, PM10, CO, NO2 and NO of air pollutants in Chengdu economic region were basically the same. The maximum monthly average concentration was in January or December, and the minimum was in May to September. The temporal variation of SO2 was characterized by little fluctuation of monthly concentration. The temporal variation characteristics of O3 were opposite to other pollutants. The spatial distribution of PM10 and PM2.5 was characterized by the largest concentration in Chengdu and the southwest of Meishan, in which they were mainly concentrated in the central area of Chengdu in winter. The average concentration of CO in Chengdu was the largest, followed by Deyang and Mianyang, and Meishan and Ziyang was the smallest. The concentrations of NO2 and NO in Chengdu were the largest, while those in Ziyang were the smallest. The spatial distribution characteristics of O3 were different from other pollutants. The areas with the largest concentration of O3 were Ziyang and a small part of west in Chengdu. The spatial distribution of SO2 was characterized by the largest concentration of SO2 in Ziyang, the lowest concentration in Mianyang and Deyang.


2014 ◽  
Vol 98 ◽  
pp. 271-282 ◽  
Author(s):  
Yolanda González-Castanedo ◽  
Teresa Moreno ◽  
Rocío Fernández-Camacho ◽  
Ana María Sánchez de la Campa ◽  
Andrés Alastuey ◽  
...  

2007 ◽  
Vol 7 (19) ◽  
pp. 5061-5079 ◽  
Author(s):  
A. Lauer ◽  
V. Eyring ◽  
J. Hendricks ◽  
P. Jöckel ◽  
U. Lohmann

Abstract. International shipping contributes significantly to the fuel consumption of all transport related activities. Specific emissions of pollutants such as sulfur dioxide (SO2) per kg of fuel emitted are higher than for road transport or aviation. Besides gaseous pollutants, ships also emit various types of particulate matter. The aerosol impacts the Earth's radiation budget directly by scattering and absorbing the solar and thermal radiation and indirectly by changing cloud properties. Here we use ECHAM5/MESSy1-MADE, a global climate model with detailed aerosol and cloud microphysics to study the climate impacts of international shipping. The simulations show that emissions from ships significantly increase the cloud droplet number concentration of low marine water clouds by up to 5% to 30% depending on the ship emission inventory and the geographic region. Whereas the cloud liquid water content remains nearly unchanged in these simulations, effective radii of cloud droplets decrease, leading to cloud optical thickness increase of up to 5–10%. The sensitivity of the results is estimated by using three different emission inventories for present-day conditions. The sensitivity analysis reveals that shipping contributes to 2.3% to 3.6% of the total sulfate burden and 0.4% to 1.4% to the total black carbon burden in the year 2000 on the global mean. In addition to changes in aerosol chemical composition, shipping increases the aerosol number concentration, e.g. up to 25% in the size range of the accumulation mode (typically >0.1 μm) over the Atlantic. The total aerosol optical thickness over the Indian Ocean, the Gulf of Mexico and the Northeastern Pacific increases by up to 8–10% depending on the emission inventory. Changes in aerosol optical thickness caused by shipping induced modification of aerosol particle number concentration and chemical composition lead to a change in the shortwave radiation budget at the top of the atmosphere (ToA) under clear-sky condition of about −0.014 W/m² to −0.038 W/m² for a global annual average. The corresponding all-sky direct aerosol forcing ranges between −0.011 W/m² and −0.013 W/m². The indirect aerosol effect of ships on climate is found to be far larger than previously estimated. An indirect radiative effect of −0.19 W/m² to −0.60 W/m² (a change in the atmospheric shortwave radiative flux at ToA) is calculated here, contributing 17% to 39% of the total indirect effect of anthropogenic aerosols. This contribution is high because ship emissions are released in regions with frequent low marine clouds in an otherwise clean environment. In addition, the potential impact of particulate matter on the radiation budget is larger over the dark ocean surface than over polluted regions over land.


Sign in / Sign up

Export Citation Format

Share Document