scholarly journals Correlation of Susceptibility of Cryptococcus neoformans to Amphotericin B with Clinical Outcome

2011 ◽  
Vol 55 (12) ◽  
pp. 5624-5630 ◽  
Author(s):  
R. A. Larsen ◽  
M. Bauer ◽  
P. Pitisuttithum ◽  
A. Sanchez ◽  
S. Tansuphaswadikul ◽  
...  

ABSTRACTTesting ofCryptococcus neoformansfor susceptibility to antifungal drugs by standard microtiter methods has not been shown to correlate with clinical outcomes. This report describes a modified quantitative broth macrodilution susceptibility method showing a correlation with both the patient's quantitative biological response in the cerebrospinal fluid (CSF) and the survival of 85 patients treated with amphotericin B (AMB). The Spearman rank correlation between the quantitativein vitromeasure of susceptibility and the quantitative measure of the number of organisms in the patient's CSF was 0.37 (P< 0.01; 95% confidence interval [95% CI], 0.20, 0.60) for the first susceptibility test replicate and 0.46 (P< 0.001; 95% CI, 0.21, 0.62) for the second susceptibility test replicate. The medianin vitroestimated response (defined as the fungal burden after AMB treatment) at 1.5 mg/liter AMB for patients alive at day 14 was 5 CFU (95% CI, 3, 8), compared to 57 CFU (95% CI, 4, 832) for those who died before day 14. These exploratory results suggest that patients whose isolates show a quantitativein vitrosusceptibility response below 10 CFU/ml were more likely to survive beyond day 14.

mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Suresh Ambati ◽  
Emma C. Ellis ◽  
Jianfeng Lin ◽  
Xiaorong Lin ◽  
Zachary A. Lewis ◽  
...  

ABSTRACT Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus cause life-threatening candidiasis, cryptococcosis, and aspergillosis, resulting in several hundred thousand deaths annually. The patients at the greatest risk of developing these life-threatening invasive fungal infections have weakened immune systems. The vulnerable population is increasing due to rising numbers of immunocompromised individuals as a result of HIV infection or immunosuppressed individuals receiving anticancer therapies and/or stem cell or organ transplants. While patients are treated with antifungals such as amphotericin B, all antifungals have serious limitations due to lack of sufficient fungicidal effect and/or host toxicity. Even with treatment, 1-year survival rates are low. We explored methods of increasing drug effectiveness by designing fungicide-loaded liposomes specifically targeted to fungal cells. Most pathogenic fungi are encased in cell walls and exopolysaccharide matrices rich in mannans. Dectin-2 is a mammalian innate immune membrane receptor that binds as a dimer to mannans and signals fungal infection. We coated amphotericin-loaded liposomes with monomers of Dectin-2’s mannan-binding domain, sDectin-2. sDectin monomers were free to float in the lipid membrane and form dimers that bind mannan substrates. sDectin-2-coated liposomes bound orders of magnitude more efficiently to the extracellular matrices of several developmental stages of C. albicans, C. neoformans, and A. fumigatus than untargeted control liposomes. Dectin-2-coated amphotericin B-loaded liposomes reduced the growth and viability of all three species more than an order of magnitude more efficiently than untargeted control liposomes and dramatically decreased the effective dose. Future efforts focus on examining pan-antifungal targeted liposomal drugs in animal models of fungal diseases. IMPORTANCE Invasive fungal diseases caused by Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have mortality rates ranging from 10 to 95%. Individual patient costs may exceed $100,000 in the United States. All antifungals in current use have serious limitations due to host toxicity and/or insufficient fungal cell killing that results in recurrent infections. Few new antifungal drugs have been introduced in the last 2 decades. Hence, there is a critical need for improved antifungal therapeutics. By targeting antifungal-loaded liposomes to α-mannans in the extracellular matrices secreted by these fungi, we dramatically reduced the effective dose of drug. Dectin-2-coated liposomes loaded with amphotericin B bound 50- to 150-fold more strongly to C. albicans, C. neoformans, and A. fumigatus than untargeted liposomes and killed these fungi more than an order of magnitude more efficiently. Targeting drug-loaded liposomes specifically to fungal cells has the potential to greatly enhance the efficacy of most antifungal drugs.


2012 ◽  
Vol 56 (11) ◽  
pp. 6044-6047 ◽  
Author(s):  
Peiying Feng ◽  
M. Javad Najafzadeh ◽  
Jiufeng Sun ◽  
Sarah Ahmed ◽  
Liyan Xi ◽  
...  

ABSTRACTCyphellophora guyanensis(n= 15), otherCyphellophoraspecies (n= 11),Phialophora europaea(n= 43), and otherPhialophoraspecies (n= 12) were testedin vitroagainst nine antifungal drugs. The MIC90s across all of the strains (n= 81) were, in increasing order, as follows: posaconazole, 0.063 μg/ml; itraconazole, 0.5 μg/ml; voriconazole, 1 μg/ml; micafungin, 1 μg/ml; terbinafine, 2 μg/ml; isavuconazole, 4 μg/ml; caspofungin, 4 μg/ml; fluconazole, 8 μg/ml; amphotericin B, 16 μg/ml.


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Ren-Yi Lu ◽  
Ting-Jun-Hong Ni ◽  
Jing Wu ◽  
Lan Yan ◽  
Quan-Zhen Lv ◽  
...  

ABSTRACT In the past decades, the incidence of cryptococcosis has increased dramatically, which poses a new threat to human health. However, only a few drugs are available for the treatment of cryptococcosis. Here, we described a leading compound, NT-a9, an analogue of isavuconazole, that showed strong antifungal activities in vitro and in vivo. NT-a9 showed a wide range of activities against several pathogenic fungi in vitro, including Cryptococcus neoformans, Cryptococcus gattii, Candida albicans, Candida krusei, Candida tropicalis, Candida glabrata, and Candida parapsilosis, with MICs ranging from 0.002 to 1 μg/ml. In particular, NT-a9 exhibited excellent efficacy against C. neoformans, with a MIC as low as 0.002 μg/ml. NT-a9 treatment resulted in changes in the sterol contents in C. neoformans, similarly to fluconazole. In addition, NT-a9 possessed relatively low cytotoxicity and a high selectivity index. The in vivo efficacy of NT-a9 was assessed using a murine disseminated-cryptococcosis model. Mice were infected intravenously with 1.8 × 106 CFU of C. neoformans strain H99. In the survival study, NT-a9 significantly prolonged the survival times of mice compared with the survival times of the control group or the isavuconazole-, fluconazole-, or amphotericin B-treated groups. Of note, 4 and 8 mg/kg of body weight of NT-a9 rescued all the mice, with a survival rate of 100%. In the fungal-burden study, NT-a9 also significantly reduced the fungal burdens in brains and lungs, while fluconazole and amphotericin B only reduced the fungal burden in lungs. Taken together, these data suggested that NT-a9 is a promising antifungal candidate for the treatment of cryptococcosis infection.


2015 ◽  
Vol 59 (9) ◽  
pp. 5827-5829 ◽  
Author(s):  
Magdalena Skóra ◽  
Małgorzata Bulanda ◽  
Tomasz Jagielski

ABSTRACTThein vitroactivities of 11 antifungal drugs against 68ScopulariopsisandMicroascusstrains were investigated. Amphotericin B, 5-fluorocytosine, fluconazole, itraconazole, ketoconazole, miconazole, posaconazole, voriconazole, and ciclopirox showed no or poor antifungal effect. The best activities were exhibited by terbinafine and caspofungin, where the MIC and MEC (minimal effective concentration) ranges were 0.0313 to >16 μg/ml and 0.125 to 16 μg/ml, respectively. The MIC and MEC modes were both 1 µg/ml for terbinafine and caspofungin; the MIC50and MEC50were 1 µg/ml for both drugs, whereas the MIC90and MEC90were 4 µg/ml and 16 µg/ml, respectively.


2012 ◽  
Vol 57 (3) ◽  
pp. 1275-1282 ◽  
Author(s):  
Francesca Bugli ◽  
Brunella Posteraro ◽  
Massimiliano Papi ◽  
Riccardo Torelli ◽  
Alessandro Maiorana ◽  
...  

ABSTRACTAspergillus fumigatusbiofilms represent a problematic clinical entity, especially because of their recalcitrance to antifungal drugs, which poses a number of therapeutic implications for invasive aspergillosis, the most difficult-to-treatAspergillus-related disease. While the antibiofilm activities of amphotericin B (AMB) deoxycholate and its lipid formulations (e.g., liposomal AMB [LAMB]) are well documented, the effectiveness of these drugs in combination with nonantifungal agents is poorly understood. In the present study,in vitrointeractions between polyene antifungals (AMB and LAMB) and alginate lyase (AlgL), an enzyme degrading the polysaccharides produced as extracellular polymeric substances (EPSs) within the biofilm matrix, againstA. fumigatusbiofilms were evaluated by using the checkerboard microdilution and the time-kill assays. Furthermore, atomic force microscopy (AFM) was used to image and quantify the effects of AlgL-antifungal combinations on biofilm-growing hyphal cells. On the basis of fractional inhibitory concentration index values, synergy was found between both AMB formulations and AlgL, and this finding was also confirmed by the time-kill test. Finally, AFM analysis showed that whenA. fumigatusbiofilms were treated with AlgL or polyene alone, as well as with their combination, both a reduction of hyphal thicknesses and an increase of adhesive forces were observed compared to the findings for untreated controls, probably owing to the different action by the enzyme or the antifungal compounds. Interestingly, marked physical changes were noticed inA. fumigatusbiofilms exposed to the AlgL-antifungal combinations compared with the physical characteristics detected after exposure to the antifungals alone, indicating that AlgL may enhance the antibiofilm activity of both AMB and LAMB, perhaps by disrupting the hypha-embedding EPSs and thus facilitating the drugs to reach biofilm cells. Taken together, our results suggest that a combination of AlgL and a polyene antifungal may prove to be a new therapeutic strategy for invasive aspergillosis, while reinforcing the EPS as a valuable antibiofilm drug target.


2013 ◽  
Vol 57 (10) ◽  
pp. 4656-4663 ◽  
Author(s):  
Antigoni Elefanti ◽  
Johan W. Mouton ◽  
Paul E. Verweij ◽  
Athanassios Tsakris ◽  
Loukia Zerva ◽  
...  

ABSTRACTAntifungal combination therapy with voriconazole or amphotericin B and an echinocandin is often employed as primary or salvage therapy for management particularly of refractory aspergillosis. The pharmacodynamic interactions of amphotericin B- and voriconazole-based combinations with the three echinocandins caspofungin, micafungin, and anidulafungin in the presence of serum were tested against 15Aspergillus fumigatuscomplex,A. flavuscomplex, andA. terreuscomplex isolates to assess both their growth-inhibitory and fungicidal activities. Thein vitroactivity of each drug alone and in combination at a 1:1 fixed concentration ratio was tested with a broth microdilution colorimetric method, and interactions were assessed by isobolographic analysis. Synergy was found for all amphotericin B- and voriconazole-based combinations, with amphotericin B-based combinations showing strong inhibitory synergistic interactions (interaction indices of 0.20 to 0.52) and with voriconazole-based combinations demonstrating strong fungicidal synergistic interactions (interaction indices of 0.10 to 0.29) (P< 0.001). Drug- and species-specific differences were found, with caspofungin and theA. fumigatuscomplex exhibiting the weakest synergistic interactions. In the presence of serum, the synergistic interactions were reduced in the order (from largest to smallest decrease) micafungin > anidulafungin > caspofungin, andA. flavuscomplex >A. fumigatuscomplex >A. terreuscomplex, resulting in additive interactions, particularly for inhibitory activities of amphotericin B-echinocandin combinations and fungicidal activities of voriconazole-echinocandin combinations. Drug- and species-specific differences were found in the presence of serum for inhibitory activities of antifungal drugs, with the lowest interaction indices being observed for amphotericin B-caspofungin (median, 0.77) and for theA. terreuscomplex (median, 0.56). The presentin vitrodata showed that serum had a major impact on synergistic interactions of amphotericin B-echinocandin and voriconazole-echinocandin combinations, resulting in additive interactions and explaining the indifferent outcomes usually observedin vivo.


1996 ◽  
Vol 40 (3) ◽  
pp. 822-824 ◽  
Author(s):  
S P Franzot ◽  
J S Hamdan

A total of 53 Cryptococcus neoformans strains, including clinical and environmental Brazilian isolates, were tested for their susceptibilities to amphotericin B, 5-flucytosine, ketoconazole, fluconazole, and itraconazole. The tests were performed according to the National Committee of Clinical Laboratory Standards recommendations (document M27-P). In general, there was a remarkable homogeneity of results for all strains, and comparable MICs were found for environmental and clinical isolates. This paper represents the first contribution in which susceptibility data for Brazilian C. neoformans isolates are provided.


2002 ◽  
Vol 46 (11) ◽  
pp. 3394-3400 ◽  
Author(s):  
David van Duin ◽  
Arturo Casadevall ◽  
Joshua D. Nosanchuk

ABSTRACT The fungal pathogens Cryptococcus neoformans and Histoplasma capsulatum produce melanin-like pigments in the presence of l-dopa in vitro and during mammalian infection. We investigated whether melanization affected the susceptibilities of the fungi to amphotericin B, caspofungin, fluconazole, itraconazole, or flucytosine (5FC). Using the standard macrodilution MIC protocol (the M27A protocol) of the National Committee for Clinical Laboratory Standards for yeast, we found no difference in the susceptibilities of melanized and nonmelanized C. neoformans and H. capsulatum isolates. Killing assays demonstrated that melanization reduced the susceptibilities of both fungi to amphotericin B and caspofungin. Laccase-deficient C. neoformans cells grown with l-dopa were significantly more susceptible than congenic melanin-producing yeast to killing by amphotericin B or caspofungin. Preincubation of amphotericin B or caspofungin with melanins decreased their antifungal activities. Elemental analysis of melanins incubated with amphotericin B or caspofungin revealed an alteration in the C:N ratios of the melanins, which indicated binding of these drugs by the melanins. In contrast, incubation of fluconazole, itraconazole, or 5FC with melanins did not significantly affect the antifungal efficacies of the drugs or the chemical composition of the melanins. The results suggest a potential explanation for the inefficacy of caspofungin against C. neoformans in vivo, despite activity in vitro. Furthermore, the results indicate that fungal melanins protect C. neoformans and H. capsulatum from the activities of amphotericin B and caspofungin and that this protection is not demonstrable by standard broth macrodilution assays.


2015 ◽  
Vol 59 (12) ◽  
pp. 7818-7822 ◽  
Author(s):  
Hamid Badali ◽  
Sadegh Khodavaisy ◽  
Hamed Fakhim ◽  
G. Sybren de Hoog ◽  
Jacques F. Meis ◽  
...  

ABSTRACTIn vitrosusceptibilities of a worldwide collection of molecularly identifiedPhaeoacremoniumstrains (n= 43) belonging to seven species and originating from human and environmental sources were determined for eight antifungal drugs. Voriconazole had the lowest geometric mean MIC (0.35 μg/ml), followed by posaconazole (0.37 μg/ml), amphotericin B (0.4 μg/ml), and isavuconazole (1.16 μg/ml). Caspofungin, anidulafungin, fluconazole, and itraconazole had no activity.


2014 ◽  
Vol 58 (9) ◽  
pp. 5629-5631 ◽  
Author(s):  
M. Javad Najafzadeh ◽  
Deanna A. Sutton ◽  
M. Saradeghi Keisari ◽  
H. Zarrinfar ◽  
G. Sybren de Hoog ◽  
...  

ABSTRACTAureobasidium pullulansis an unusual agent of phaeohyphomycosis. Thein vitroactivities of antifungals against 104 isolates ofAureobasidium pullulansvar.pullulansandA. pullulansvar.melanigenumrevealed low MIC90s of amphotericin B, posaconazole, and itraconazole. However, they were resistant to fluconazole (≥64 μg/ml) and had high MICs of voriconazole, isavuconazole, caspofungin, and micafungin.


Sign in / Sign up

Export Citation Format

Share Document