high mics
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 11)

H-INDEX

17
(FIVE YEARS 2)

Antibiotics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 50
Author(s):  
Mathilde Lescat ◽  
Mélanie Magnan ◽  
Sonia Kenmoe ◽  
Patrice Nordmann ◽  
Laurent Poirel

Bacterial adaptation to antiseptic selective pressure might be associated with decreased susceptibility to antibiotics. In Gram-negative bacteria, some correlations between reduced susceptibility to chlorhexidine (CHX) and polymyxins have been recently evidenced in Klebsiella pneumoniae. In the present study, four isolates belonging to distinct enterobacterial species, namely K. pneumoniae, Escherichia coli, Klebsiella oxytoca and Enterobacter cloacae, were submitted to in-vitro selective adaptation to two antiseptics, namely CHX and octenidine (OCT), and to the antibiotic colistin (COL). Using COL as selective agent, mutants showing high MICs for that molecule were recovered for E. cloacae, K. pneumoniae and K. oxytoca, exhibiting a moderate decreased susceptibility to CHX, whereas OCT susceptibility remained unchanged. Using CHX as selective agent, mutants with high MICs for that molecule were recovered for all four species, with a cross-resistance observed for COL, while OCT susceptibility remained unaffected. Finally, selection of mutants using OCT as selective molecule allowed recovery of K. pneumoniae, K. oxytoca and E. cloacae strains showing only slightly increased MICs for that molecule, without any cross-elevated MICs for the two other molecules tested. No E. coli mutant with reduced susceptibility to OCT could be obtained. It was therefore demonstrated that in-vitro mutants with decreased susceptibility to CHX and COL may be selected in E. coli, K. pneumoniae, K. oxytoca and E. cloacae, showing cross-decreased susceptibility to COL and CHX, but no significant impact on OCT efficacy. On the other hand, mutants were difficult to obtain with OCT, being obtained for K. pneumoniae and E. cloacae only, showing only very limited decreased susceptibility in those cases, and with no cross effect on other molecules. Whole genome sequencing enabled deciphering of the molecular basis of adaptation of these isolates under the respective selective pressures, with efflux pumps or lipopolysaccharide biosynthesis being the main mechanisms of adaptation.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Aimilia Stavrou ◽  
Ferry Hagen ◽  
Teun Boekhout ◽  
Carlo Brouwer

Fungal infections are a serious health concern affecting over 1.5 million individuals annually. ID-CARD aims to improve diagnostics taking into account phylogeny and antifungal susceptibility patterns of Candida spp. involved in candidemia.Twenty-five Candida spp. were chosen. Based on ribosomal DNA sequences, clade-specific primers/Taqman probes were designed. Different multiplex panels consisting of four clades that exhibited similar antifungal susceptibility profiles were created. To create the groups, we tested fluconazole and anidulafungin with broth microdilution according to EUCAST against 3-5 isolates/species (n=121), which were also used for specificity testing of the molecular assay. Furthermore, we tested the in vitro activity of hLF(1-11) peptide against isolates that exhibited elevated minimum inhibitory concentrations (MICs) for one or both of the drugs. The groups created are : i. Lodderomyces, Kluyveromyces, Metschnikowiaceae Sensitive, Internal control, (all with low MICs) ii. Pichiaceae, Nakaseomyces, Wickerhamomycetaceae, Debaryomyces & Diutina, (all with high MICs to azoles) and iii. Yarrowia, Wickerhamiella & Meyerozyma, Candida auris, Candida haemulonii complex (all with high MICs to both azoles & echinocandins). The primers/probes showed 100% specificity and capacity for multiplexing. In vitro experiments indicated that hLF(1-11) is fungicidal against various Candidaspp. A synergistic effect of antifungal and hLF(1-11) against various Candida species was shown as combinations of the peptide with antifungals were more effective than these alone ID-CARD will contribute to a fast and reliable molecular detection of yeasts involved in candidiasis. AMPs is a novel way to treat Candida spp. exhibiting high MICs to commonly used antifungal drugs.


Author(s):  
Xin-Fei Chen ◽  
Wei Zhang ◽  
Xin Fan ◽  
Xin Hou ◽  
Xiao-Yu Liu ◽  
...  

Diutina catenulata (Candida catenulata) is an ascomycete yeast species widely used in environmental and industrial research and capable of causing infections in humans and animals. At present, there are only a few studies on D. catenulata, and further research is required for its more in-depth characterization and analysis. Eleven strains of D. catenulata collected from China Hospital Invasive Fungal Surveillance Net (CHIF-NET) and the CHIF-NET North China Program were identified using matrix-assisted laser desorption ionization–time of flight mass spectrometry and internal transcribed spacer sequencing. The antifungal susceptibility of the Diutina catenulata strains was tested using the Clinical and Laboratory Standards Institute broth microdilution method and Sensititre YeastOne™. Furthermore, ERG11 and FKS1 were sequenced to determine any mutations related to azole and echinocandin resistance in D. catenulata. All isolates exhibited low minimum inhibitory concentration (MIC) values for itraconazole (0.06–0.12 μg/ml), posaconazole (0.06–0.12 μg/ml), amphotericin B (0.25–1 μg/ml), and 5-flucytosine (range, <0.06–0.12 μg/ml), whereas four isolates showed high MICs (≥4 μg/ml) for echinocandins. Strains with high MIC values for azoles showed common ERG11 mutations, namely, F126L/K143R. In addition, L139R mutations may be linked to high MICs of fluconazole. Two amino acid alterations reported to correspond to high MIC values of echinocandin, namely, F621I (F641) and S625L (S645), were found in the hot spot 1 region of FKS1. In addition, one new amino acid alteration, I1348S (I1368), was found outside of the FKS1 hot spot 2 region, and its contribution to echinocandin resistance requires future investigation. Diutina catenulata mainly infects patients with a weak immune system, and the high MIC values for various antifungals exhibited by these isolates may represent a challenge to clinical treatment.


Author(s):  
Xue Kong ◽  
Chao Tang ◽  
Ashutosh Singh ◽  
Sarah A. Ahmed ◽  
Abdullah M.S. Al-Hatmi ◽  
...  

Background: During the past decade, a prolonged and serious outbreak of dermatophytosis due to a terbinafine-resistant novel species in the Trichophyton mentagrophytes/T. interdigitale complex is ongoing in India, and it spreads to several European countries. Objective: To investigate the molecular background of the squalene epoxidase (SQLE) gene in order to understand the risk of emergence and spread of multi-resistance in dermatophytes. Methods: Antifungal susceptibility for fluconazole, griseofulvin, itraconazole, ketoconazole, miconazole, naftifine, sertaconazole, and terbinafine was tested in 135 isolates from India, China, Australia, Germany and The Netherlands. Based on the latest taxonomic insights, strains were identified as three species: T. mentagrophytes s. str. (n=35), T. indotineae (n=64 representing the Indian clone) and T. interdigitale s. str. (n=36). Results: High minimum inhibitory concentrations (MICs) of terbinafine (>16 mg/L) were found in 34 (53%) T. indotineae isolates. These isolates showed an amino acid substitution in the 397th position of the SQLE gene. Elevated MICs of terbinafine (0.5 mg/L) were noted in 2 (3%) T. indotineae isolates; these isolates lead to Phe415Val and Leu393Ser of the SQLE gene. Stability of the effect of the mutations was proven by serial transfer on drug-free medium. Substitutions of Lys276Asn and Leu419Phe were found in susceptible T. mentagrophytes strains. The double mutant Phe377Leu/Ala448Thr showed higher MIC values for triazoles. Conclusions: High MICs of terbinafine are as yet limited to T. indotineae, and are unlikely to be distributed through the T. mentagrophytes species complex by genetic exchange.


2021 ◽  
Vol 7 (4) ◽  
pp. 279
Author(s):  
Soraya E. Morales-López ◽  
Guillermo Garcia-Effron

Infections due to rare Cryptococcus species (other than C. neoformans species complex, C. gattii species complex, C. albidus or C. laurentii) are barely reported. The aim of this work is to present a comprehensive literature review of all the papers describing infections due to these species referenced in the main databases (PubMed/MEDLINE, ScienceDirect, Scopus, and Google Scholar). Clinical and epidemiological data together with laboratory findings (identification and antifungal susceptibility) of each isolate were analyzed. Fifty-eight cryptococosis due to rare species were described in 46 papers between 1934–2018. These reports included 16 rare Cryptococcus spp. that were generally associated with nervous system infections and fungemias. Some species are non-capsulated and are not able to grow at 37 °C. Few species were identified by commercially available methods, making internal transcriber spacer (ITS) and D1/D2 regions sequencing mandatory. The most potent antifungal was amphotericin B (although some species showed high MIC values). The studied strains showed high MICs values to 5-fluorocytosine (all >64 µg/mL), echinocandins (all >8 µg/mL), and fluconazole (>80% of the MICs >4 µg/mL). Due to the scarcity of the data and the absence of guidelines for the treatment of these infections, this review could be informative and could help in the diagnosis and treatment of these infections.


Author(s):  
Marcio Nucci ◽  
Jeffrey Jenks ◽  
George R Thompson ◽  
Martin Hoenigl ◽  
Marielle Camargo dos Santos ◽  
...  

Abstract Background Invasive fusariosis (IF) affects mostly severely immunocompromised hosts and is associated with poor outcome. Since Fusarium species exhibit high MICs for most antifungal agents, this could explain the poor prognosis. However, a clear-cut correlation between MIC and outcome has not been established. Objective To evaluate the correlation between MIC and outcome (6 week death rate) in patients with IF. Methods We performed a multicentre retrospective study of patients with IF who received treatment and had MIC levels determined by EUCAST or CLSI for the drug(s) used during treatment. We compared the MIC50 and MIC distribution among survivors and patients who died within 6 weeks from the diagnosis of IF. Results Among 88 patients with IF, 74 had haematological diseases. Primary treatment was monotherapy in 52 patients (voriconazole in 27) and combination therapy in 36 patients (liposomal amphotericin B + voriconazole in 23). The MIC50 and range for the five most frequent agents tested were: voriconazole 8 mg/L (range 0.5–64), amphotericin B 2 mg/L (range 0.25–64), posaconazole 16 mg/L (range 0.5–64), itraconazole 32 mg/L (range 4–64), and isavuconazole 32 mg/L (range 8–64). There was no difference in MIC50 and MIC distribution among survivors and patients who died. By contrast, persistent neutropenia and receipt of corticosteroids were strong predictors of 6 week mortality. Conclusions Our study did not show any correlation between MIC and mortality at 6 weeks in patients with IF.


2020 ◽  
Vol 64 (12) ◽  
Author(s):  
S. Imbert ◽  
A. C. Normand ◽  
S. Cassaing ◽  
F. Gabriel ◽  
L. Kristensen ◽  
...  

ABSTRACT The antifungal susceptibility of Aspergillus cryptic species is poorly known. We assessed 51 isolates, belonging to seven Fumigati cryptic species, by the EUCAST reference method and the concentration gradient strip (CGS) method. Species-specific patterns were observed, with high MICs for azole drugs, except for Aspergillus hiratsukae and Aspergillus tsurutae, and high MICs for amphotericin B for Aspergillus lentulus and Aspergillus udagawae. Essential and categorical agreements between EUCAST and CGS results were between 53.3 and 93.3%.


Antibiotics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 460
Author(s):  
Marco Bottinelli ◽  
Marianna Merenda ◽  
Michele Gastaldelli ◽  
Micaela Picchi ◽  
Elisabetta Stefani ◽  
...  

Mycoplasma dispar is an overlooked pathogen often involved in bovine respiratory disease (BRD), which affects cattle around the world. BRD results in lost production and high treatment and prevention costs. Additionally, chronic therapies with multiple antimicrobials may lead to antimicrobial resistance. Data on antimicrobial susceptibility to M. dispar is limited so minimum inhibitory concentrations (MIC) of a range of antimicrobials routinely used in BRD were evaluated using a broth microdilution technique for 41 M. dispar isolates collected in Italy between 2011–2019. While all isolates had low MIC values for florfenicol (<1 μg/mL), many showed high MIC values for erythromycin (MIC90 ≥8 μg/mL). Tilmicosin MIC values were higher (MIC50 = 32 μg/mL) than those for tylosin (MIC50 = 0.25 μg/mL). Seven isolates had high MIC values for lincomycin, tilmicosin and tylosin (≥32 μg/mL). More, alarmingly, results showed more than half the strains had high MICs for enrofloxacin, a member of the fluoroquinolone class considered critically important in human health. A time-dependent progressive drift of enrofloxacin MICs towards high-concentration values was observed, indicative of an on-going selection process among the isolates.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Lujuan Gao ◽  
Yi Sun ◽  
Mingzhu Yuan ◽  
Ming Li ◽  
Tongxiang Zeng

ABSTRACT In vitro and in vivo interactions of minocycline and azoles, including itraconazole, voriconazole, and posaconazole, against filamentous pathogenic fungi were investigated. A total of 56 clinical isolates were studied in vitro via broth microdilution checkerboard technique, including 20 strains of Aspergillus fumigatus, 7 strains of Aspergillus flavus, 16 strains of Exophiala dermatitidis, 10 strains of Fusarium solani, and 3 strain s of Fusarium oxysporum. The results revealed that minocycline did not exhibit any significant antifungal activity against any of the tested strains. However, favorable synergy of minocycline with itraconazole, voriconazole, or posaconazole was observed against 34 (61%), 28 (50%), and 38 (68%) isolates, respectively, including azole-resistant A. fumigatus and Fusarium spp. with inherently high MICs of azoles. Synergistic combinations resulted in 4-fold to 16-fold reduction of effective MICs of minocycline and azoles. No antagonism was observed. In vivo effects of minocycline-azole combinations were evaluated by survival assay in a Galleria mellonella model infected with E. dermatitidis strain BMU00034; F. solani strain FS9; and A. fumigatus strains AF293, AFR1, and AFR2. Minocycline acted synergistically with azoles and significantly increased larvae survival in all isolates (P < 0.001), including azole-resistant A. fumigatus and azole-inactive Fusarium spp. In conclusion, the results suggested that minocycline combined with azoles may help to enhance the antifungal susceptibilities of azoles against pathogenic fungi and had the potential to overcome azole resistance issues.


2019 ◽  
Vol 63 (8) ◽  
Author(s):  
Lysett Wagner ◽  
Sybren de Hoog ◽  
Ana Alastruey-Izquierdo ◽  
Kerstin Voigt ◽  
Oliver Kurzai ◽  
...  

ABSTRACTRecently, the species concept of opportunisticMucor circinelloidesand its relatives has been revised, resulting in the recognition of its classical formae as independent species and the description of new species. In this study, we used isolates of all clinically relevantMucorspecies and performed susceptibility testing using the EUCAST reference method to identify potential species-specific susceptibility patterns.In vitrosusceptibility profiles of 101 mucoralean strains belonging to the genusMucor(72), the closely related speciesCokeromyces recurvatus(3),Rhizopus(12),Lichtheimia(10), andRhizomucor(4) to six antifungals (amphotericin B, natamycin, terbinafine, isavuconazole, itraconazole, and posaconazole) were determined. The most active drug for all Mucorales was amphotericin B. Antifungal susceptibility profiles of pathogenicMucorspecies were specific for isavuconazole, itraconazole, and posaconazole. The species formerly united inM. circinelloidesshowed clear differences in their antifungal susceptibilities.Cokeromyces recurvatus,Mucor ardhlaengiktus,Mucor lusitanicus(M. circinelloidesf.lusitanicus), andMucor ramosissimusexhibited high MICs to all azoles tested.Mucor indicuspresented high MICs for isavuconazole and posaconazole, andMucor amphibiorumandMucor irregularisshowed high MICs for isavuconazole. MIC values ofMucorspp. for posaconazole, isavuconazole, and itraconazole were high compared to those forRhizopusand the Lichtheimiaceae (LichtheimiaandRhizomucor). Molecular identification combined within vitrosusceptibility testing is recommended forMucorspecies, especially if azoles are applied in treatment.


Sign in / Sign up

Export Citation Format

Share Document