scholarly journals Crystal Structure of the Extended-Spectrum β-Lactamase PER-2 and Insights into the Role of Specific Residues in the Interaction with β-Lactams and β-Lactamase Inhibitors

2014 ◽  
Vol 58 (10) ◽  
pp. 5994-6002 ◽  
Author(s):  
Melina Ruggiero ◽  
Frédéric Kerff ◽  
Raphaël Herman ◽  
Frédéric Sapunaric ◽  
Moreno Galleni ◽  
...  

ABSTRACTPER-2 belongs to a small (7 members to date) group of extended-spectrum β-lactamases. It has 88% amino acid identity with PER-1 and both display high catalytic efficiencies toward most β-lactams. In this study, we determined the X-ray structure of PER-2 at 2.20 Å and evaluated the possible role of several residues in the structure and activity toward β-lactams and mechanism-based inhibitors. PER-2 is defined by the presence of a singulartransbond between residues 166 to 167, which generates an inverted Ω loop, an expanded fold of this domain that results in a wide active site cavity that allows for efficient hydrolysis of antibiotics like the oxyimino-cephalosporins, and a series of exclusive interactions between residues not frequently involved in the stabilization of the active site in other class A β-lactamases. PER β-lactamases might be included within a cluster of evolutionarily related enzymes harboring the conserved residues Asp136 and Asn179. Other signature residues that define these enzymes seem to be Gln69, Arg220, Thr237, and probably Arg/Lys240A (“A” indicates an insertion according to Ambler's scheme for residue numbering in PER β-lactamases), with structurally important roles in the stabilization of the active site and proper orientation of catalytic water molecules, among others. We propose, supported by simulated models of PER-2 in combination with different β-lactams, the presence of a hydrogen-bond network connecting Ser70-Gln69-water-Thr237-Arg220 that might be important for the proper activity and inhibition of the enzyme. Therefore, we expect that mutations occurring in these positions will have impacts on the overall hydrolytic behavior.

Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 854 ◽  
Author(s):  
Alexey Egorov ◽  
Maya Rubtsova ◽  
Vitaly Grigorenko ◽  
Igor Uporov ◽  
Alexander Veselovsky

Bacterial resistance to β-lactams, the most commonly used class of antibiotics, poses a global challenge. This resistance is caused by the production of bacterial enzymes that are termed β-lactamases (βLs). The evolution of serine-class A β-lactamases from penicillin-binding proteins (PBPs) is related to the formation of the Ω-loop at the entrance to the enzyme’s active site. In this loop, the Glu166 residue plays a key role in the two-step catalytic cycle of hydrolysis. This residue in TEM–type β-lactamases, together with Asn170, is involved in the formation of a hydrogen bonding network with a water molecule, leading to the deacylation of the acyl–enzyme complex and the hydrolysis of the β-lactam ring of the antibiotic. The activity exhibited by the Ω-loop is attributed to the positioning of its N-terminal residues near the catalytically important residues of the active site. The structure of the Ω-loop of TEM-type β-lactamases is characterized by low mutability, a stable topology, and structural flexibility. All of the revealed features of the Ω-loop, as well as the mechanisms related to its involvement in catalysis, make it a potential target for novel allosteric inhibitors of β-lactamases.


1995 ◽  
Vol 305 (1) ◽  
pp. 33-40 ◽  
Author(s):  
A Petit ◽  
L Maveyraud ◽  
F Lenfant ◽  
J P Samama ◽  
R Labia ◽  
...  

Residue 104 is frequently mutated from a glutamic acid to a lysine in the extended-spectrum TEM beta-lactamases responsible for the resistance to third-generation cephalosporins in clinical Gram negative strains. Among class A beta-lactamases, it is the most variable residue within a highly conserved loop which delineates one side of the active site of the enzymes. To investigate the role of this residue in the extended-spectrum phenotype, it has been replaced by serine, threonine, lysine, arginine, tyrosine and proline. All these substitutions yield active enzymes, with no drastic changes in kinetic properties compared with the wild-type enzyme, except with cefaclor, but an overall improved affinity for second- and third-generation cephalosporins. Only mutant E104K exhibits a significant ability to hydrolyse cefotaxime. Molecular modelling shows that the substitutions have generally no impact on the conformation of the 101-111 loop as the side chains of residues at position 104 are all turned towards the solvent. Unexpectedly, the E104P mutant turns out to be the most efficient enzyme. All our results argue in favour of an indirect role for this residue 104 in the substrate specificity of the class A beta-lactamases. This residue contributes to the precise positioning of residues 130-132 which are involved in substrate binding and catalysis. Changing residue 104 could also modify slightly the local electrostatic potential in this part of the active site. The limited kinetic impact of the mutations at this position have to be analysed in the context of the microbiological problem of resistance to third-generation cephalosporins. Although mutation E104K improves the ability of the enzyme to hydrolyse these compounds, it is not sufficient to confer true resistance, and is always found in clinical isolates associated with at least one mutation at another part of the active site. It is the combined effect of the two mutations that synergistically enhances the hydrolytic capability of the enzyme towards third-generation cephalosporins.


1990 ◽  
Vol 271 (2) ◽  
pp. 399-406 ◽  
Author(s):  
F Jacob ◽  
B Joris ◽  
S Lepage ◽  
J Dusart ◽  
J M Frère

Ser130, Asp131 and Asn132 (‘SDN’) are highly conserved residues in class A beta-lactamases forming one wall of the active-site cavity. All three residues of the SDN loop in Streptomyces albus G beta-lactamase were modified by site-directed mutagenesis. The mutant proteins were expressed in Streptomyces lividans, purified from culture supernatants and their kinetic parameters were determined for several substrates. Ser130 was substituted by Asn, Ala and Gly. The first modification yielded an almost totally inactive protein, whereas the smaller-side-chain mutants (A and G) retained some activity, but were less stable than the wild-type enzyme. Ser130 might thus be involved in maintaining the structure of the active-site cavity. Mutations of Asp131 into Glu and Gly proved to be highly detrimental to enzyme stability, reflecting significant structural perturbations. Mutation of Asn132 into Ala resulted in a dramatically decreased enzymic activity (more than 100-fold) especially toward cephalosporin substrates, kcat. being the most affected parameter, which would indicate a role of Asn132 in transition-state stabilization rather than in ground-state binding. Comparison of the N132A and the previously described N132S mutant enzymes underline the importance of an H-bond-forming residue at position 132 for the catalytic process.


2009 ◽  
Vol 420 (2) ◽  
pp. 221-227 ◽  
Author(s):  
Helge C. Dorfmueller ◽  
Vladimir S. Borodkin ◽  
Marianne Schimpl ◽  
Daan M. F. van Aalten

O-GlcNAcylation is an essential, dynamic and inducible post-translational glycosylation of cytosolic proteins in metazoa and can show interplay with protein phosphorylation. Inhibition of OGA (O-GlcNAcase), the enzyme that removes O-GlcNAc from O-GlcNAcylated proteins, is a useful strategy to probe the role of this modification in a range of cellular processes. In the present study, we report the rational design and evaluation of GlcNAcstatins, a family of potent, competitive and selective inhibitors of human OGA. Kinetic experiments with recombinant human OGA reveal that the GlcNAcstatins are the most potent human OGA inhibitors reported to date, inhibiting the enzyme in the sub-nanomolar to nanomolar range. Modification of the GlcNAcstatin N-acetyl group leads to up to 160-fold selectivity against the human lysosomal hexosaminidases which employ a similar substrate-assisted catalytic mechanism. Mutagenesis studies in a bacterial OGA, guided by the structure of a GlcNAcstatin complex, provides insight into the role of conserved residues in the human OGA active site. GlcNAcstatins are cell-permeant and, at low nanomolar concentrations, effectively modulate intracellular O-GlcNAc levels through inhibition of OGA, in a range of human cell lines. Thus these compounds are potent selective tools to study the cell biology of O-GlcNAc.


1994 ◽  
Vol 301 (2) ◽  
pp. 477-483 ◽  
Author(s):  
J M Wilkin ◽  
A Dubus ◽  
B Joris ◽  
J M Frère

The side chains of residues Thr299 and Thr301 in the Streptomyces R61 DD-peptidase have been modified by site-directed mutagenesis. These amino acids are part of a beta-strand which forms a wall of the active-site cavity. Thr299 corresponds to the second residue of the Lys-Thr(Ser)-Gly triad, highly conserved in active-site beta-lactamases and penicillin-binding proteins (PBPs). Modification of Thr301 resulted only in minor alterations of the catalytic and penicillin-binding properties of the enzyme. No selective decrease of the rate of acylation was observed for any particular class of compounds. By contrast, the loss of the hydroxy group of the residue in position 299 yielded a seriously impaired enzyme. The rates of inactivation by penicillins were decreased 30-50-fold, whereas the reactions with cephalosporins were even more affected. The efficiency of hydrolysis against the peptide substrate was also seriously decreased. More surprisingly, the mutant was completely unable to catalyse transpeptidation reactions. The conservation of an hydroxylated residue in this position in PBPs is thus easily explained by these results.


2011 ◽  
Vol 55 (6) ◽  
pp. 2710-2713 ◽  
Author(s):  
Guo-Bao Tian ◽  
Jennifer M. Adams-Haduch ◽  
Tatiana Bogdanovich ◽  
Hong-Ning Wang ◽  
Yohei Doi

ABSTRACTA novel extended-spectrum β-lactamase (ESBL) was identified in aPseudomonas aeruginosaclinical isolate obtained from a patient admitted to a hospital in Pennsylvania in 2008. The patient had a prolonged hospitalization in a hospital in Dubai, United Arab Emirates, before being transferred to the United States. The novel ESBL, designated PME-1 (Pseudomonas aeruginosaESBL 1), is a molecular class A, Bush-Jacoby-Medeiros group 2be enzyme and shared 50, 43, and 41% amino acid identity with the L2 β-lactamase ofStenotrophomonas maltophilia, CTX-M-9, and KPC-2, respectively. PME-1 conferred clinically relevant resistance to ceftazidime, cefotaxime, cefepime, and aztreonam inP. aeruginosaPAO1 but not to carbapenems. Purified PME-1 showed good hydrolytic activity against ceftazidime, cefotaxime, and aztreonam, while activity against carbapenems and cefepime could not be measured. PME-1 was inhibited well by β-lactamase inhibitors, including clavulanic acid, sulbactam, and tazobactam. TheblaPME-1gene was carried by an approximately 9-kb plasmid and flanked by tandem ISCR24elements.


Zygote ◽  
1998 ◽  
Vol 6 (1) ◽  
pp. 75-83 ◽  
Author(s):  
R. D. Moreno ◽  
M. S. Sepúlveda ◽  
A. de Ioannes ◽  
C. Barros

SummaryMammalian acrosin is a protease present as a zymogen in the acrosome of a non-reacted mammalian sperm, and in vitro is able to carry out limited hydrolysis of homologous and heterologous zonae pellucidae. On the other hand, sulphated polymers and zona pellcida glycoproteins bind to acrosin on a domain different from the active site, named the polysulphate binding domain (PSBD). Thus it is believed that acrosome-reacted spermatozoa bind to glycan chains of the zona pellucida through PSBD participating as secondary binding receptor. The aim of the present work was to study the role of PSBD during both human gamete interaction and acrosin activation. In this work we present evidence that the anti-human acrosin monoclonal antibody C5F10 is directed to an epitope located on or near the PSBD on human proacrosin/acrosin. Moreover, we show that this antibody is able to inhibit both proacrosin activation induced by fucoidan and the sperm binding to the zona pellucida. Our results suggest that the same PSBD is involved in both sperm secondary binding, during zona pellucida penetration, and proacrosin activation.


Sign in / Sign up

Export Citation Format

Share Document