scholarly journals Efficacy of NZ2114, a Novel Plectasin-Derived Cationic Antimicrobial Peptide Antibiotic, in Experimental Endocarditis Due to Methicillin-Resistant Staphylococcus aureus

2011 ◽  
Vol 55 (11) ◽  
pp. 5325-5330 ◽  
Author(s):  
Yan Q. Xiong ◽  
Wessam Abdel Hady ◽  
Antoine Deslandes ◽  
Astrid Rey ◽  
Laurent Fraisse ◽  
...  

ABSTRACTCationic antimicrobial peptides (CAPs) play important roles in host immune defenses. Plectasin is a defensin-like CAP isolated from the saprophytic fungusPseudoplectania nigrella. NZ2114 is a novel variant of plectasin with potent activity against Gram-positive bacteria. In this study, we investigated (i) thein vivopharmacokinetic and pharmacodynamic (PK/PD) characteristics of NZ2114 and (ii) thein vivoefficacy of NZ2114 in comparison with those of two conventional antibiotics, vancomycin or daptomycin, in an experimental rabbit infective endocarditis (IE) model due to a methicillin-resistantStaphylococcus aureus(MRSA) strain (ATCC 33591). All NZ2114 regimens (5, 10, and 20 mg/kg of body weight, intravenously [i.v.], twice daily for 3 days) significantly decreased MRSA densities in cardiac vegetations, kidneys, and spleen versus those in untreated controls, except in one scenario (5 mg/kg, splenic MRSA counts). The efficacy of NZ2114 was clearly dose dependent in all target tissues. At 20 mg/kg, NZ2114 showed a significantly greater efficacy than vancomycin (P< 0.001) and an efficacy similar to that of daptomycin. Of importance, only NZ2114 (in 10- and 20-mg/kg regimens) prevented posttherapy relapse in cardiac vegetations, kidneys, and spleen, while bacterial counts in these target tissues continued to increase in vancomycin- and daptomycin-treated animals. Thesein vivoefficacies were equivalent and significantly correlated with three PK indices investigated:fCmax/MIC (the maximum concentration of the free, unbound fraction of a drug in serum divided by the MIC),fAUC/MIC (where AUC is the area under the concentration-time curve), andf%T>MIC(%T>MICis the cumulative percentage of a 24-h period that the drug concentration exceeds the MIC under steady-state pharmacokinetic conditions), as analyzed by a sigmoid maximum-effect (Emax) model (R2> 0.69). The superior efficacy of NZ2114 in this MRSA IE model suggests the potential for further development of this compound for treating serious MRSA infections.

2010 ◽  
Vol 54 (12) ◽  
pp. 5115-5119 ◽  
Author(s):  
Jared L. Crandon ◽  
Joseph L. Kuti ◽  
David P. Nicolau

ABSTRACT Telavancin displays potent in vitro and in vivo activity against methicillin-resistant Staphylococcus aureus (MRSA), including strains with reduced susceptibility to vancomycin. We compared the efficacies of telavancin and vancomycin against MRSA strains with vancomycin MICs of ≥1 μg/ml in a neutropenic murine lung infection model. Thirteen clinical MRSA isolates (7 vancomycin-susceptible, 2 vancomycin-heteroresistant [hVISA], and 4 vancomycin-intermediate [VISA] isolates) were tested after 24 h, and 7 isolates (1 hVISA and 4 VISA isolates) were tested after 48 h of exposure. Mice were administered subcutaneous doses of telavancin at 40 mg/kg of body weight every 12 h (q12h) or of vancomycin at 110 mg/kg q12h; doses were designed to simulate the area under the concentration-time curve for the free, unbound fraction of drug (fAUC) observed for humans given telavancin at 10 mg/kg q24h or vancomycin at 1 g q12h. Efficacy was expressed as the 24- or 48-h change in lung bacterial density from pretreatment counts. At dose initiation, the mean bacterial load was 6.16 ± 0.26 log10 CFU/ml, which increased by averages of 1.26 ± 0.55 and 1.74 ± 0.68 log in untreated mice after 24 and 48 h, respectively. At both time points, similar CFU reductions were noted for telavancin and vancomycin against MRSA, with vancomycin MICs of ≤2 μg/ml. Both drugs were similarly efficacious after 24 and 48 h of treatment against the hVISA strains tested. Against VISA isolates, telavancin reduced bacterial burdens significantly more than vancomycin for 1 of 4 isolates after 24 h and for 3 of 4 isolates after 48 h. These data support the potential utility of telavancin for the treatment of MRSA pneumonia caused by pathogens with reduced susceptibility to vancomycin.


2014 ◽  
Vol 59 (2) ◽  
pp. 790-795 ◽  
Author(s):  
Eleftheria Mavridou ◽  
Ria J. B. Melchers ◽  
Anita C. H. A. M. van Mil ◽  
E. Mangin ◽  
Mary R. Motyl ◽  
...  

ABSTRACTMK7655 is a newly developed beta-lactamase inhibitor of class A and class C carbapenemases. Pharmacokinetics (PK) of imipenem-cilastatin (IMP/C) and MK7655 were determined for intraperitoneal doses of 4 mg/kg to 128 mg/kg of body weight. MIC and pharmacodynamics (PD) studies of MK7655 were performed against several beta-lactamase producingPseudomonas aeruginosaandKlebsiella pneumoniaestrains to determine its effectin vitroandin vivo. Neutropenic mice were infected in each thigh 2 h before treatment with an inoculum of approximately 5 × 106CFU. They were treated with IMP/C alone (every 2 hours [q2h], various doses) or in combination with MK7655 in either a dose fractionation study or q2h for 24 h and sacrificed for CFU determinations. IMP/MK7655 decreased MICs regarding IMP MIC. The PK profiles of IMP/C and MK7655 were linear over the dosing range studied and comparable with volumes of distribution (V) of 0.434 and 0.544 liter/kg and half-lives (t1/2) of 0.24 and 0.25 h, respectively. Protein binding of MK7655 was 20%. A sigmoidal maximum effect (Emax) model was fit to the PK/PD index responses. The effect of the inhibitor was not related to the maximum concentration of drug in serum (Cmax)/MIC, and model fits forT>MICand area under the concentration-time curve (AUC)/MIC were comparable (R2of 0.7 and 0.75), but there appeared to be no significant relationship of effect with dose frequency. Escalating doses of MK7655 and IMP/C showed that the AUC of MK7655 required for a static effect was dependent on the dose of IMP/C and the MIC of the strain, with a mean area under the concentration-time curve for the free, unbound fraction of the drug (fAUC) of 26.0 mg · h/liter. MK7655 shows significant activityin vivoand results in efficacy of IMP/C in otherwise resistant strains. The exposure-response relationships found can serve as a basis for establishing dosing regimens in humans.


2011 ◽  
Vol 55 (7) ◽  
pp. 3453-3460 ◽  
Author(s):  
Arnold Louie ◽  
Weiguo Liu ◽  
Robert Kulawy ◽  
G. L. Drusano

ABSTRACTTorezolid phosphate (TR-701) is the phosphate monoester prodrug of the oxazolidinone TR-700 which demonstrates potentin vitroactivity against Gram-positive bacteria, including methicillin-susceptibleStaphylococcus aureus(MSSA) and methicillin-resistantS. aureus(MRSA). The pharmacodynamics of TR-701 or TR-700 (TR-701/700) againstS. aureusis incompletely defined. Single-dose pharmacokinetic studies were conducted in mice for TR-701/700. Forty-eight-hour dose range and 24-hour dose fractionation studies were conducted in a neutropenic mouse thigh model ofS. aureusinfection using MRSA ATCC 33591 to identify the dose and schedule of administration of TR-701/700 that was linked with optimized antimicrobial effect. Additional dose range studies compared the efficacies of TR-701/700 and linezolid for one MSSA strain and one community-associated MRSA strain. In dose range studies, TR-701/700 was equally bactericidal against MSSA and MRSA. Mean doses of 37.6 and 66.9 mg/kg of body weight/day of TR-701/700 resulted in stasis and 1 log CFU/g decreases in bacterial densities, respectively, at 24 h, and mean doses of 35.3, 46.6, and 71.1 mg/kg/day resulted in stasis and 1 and 2 log CFU/g reductions, respectively, at 48 h. Linezolid administered at doses as high as 150 mg/kg/day did not achieve stasis at either time point. Dose fractionation studies demonstrated that the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC ratio) was the pharmacodynamic index for TR-701/700 that was linked with efficacy. TR-701/700 was highly active against MSSA and MRSA,in vivo, and was substantially more efficacious than linezolid, although linezolid's top exposure has half the human exposure. Dose fractionation studies showed that AUC/MIC was the pharmacodynamic index linked with efficacy, indicating that once-daily dosing in humans is feasible.


2015 ◽  
Vol 59 (6) ◽  
pp. 3252-3256 ◽  
Author(s):  
Liana C. Chan ◽  
Li Basuino ◽  
Etyene C. Dip ◽  
Henry F. Chambers

ABSTRACTTedizolid, the active component of the prodrug tedizolid phosphate, is a novel oxazolidinone that is approximately 4 times more active by weight than linezolid againstStaphylococcus aureusin vitro. Thein vivoefficacy of tedizolid phosphate (15 mg/kg body weight intravenous [i.v.] twice a day [b.i.d.]) was compared to those of vancomycin (30 mg/kg i.v. b.i.d.) and daptomycin (18 mg/kg i.v. once a day [q.d.]) in a rabbit model of aortic valve endocarditis (AVE) caused by methicillin-resistantS. aureusstrain COL (infection inoculum of 107CFU). Median vegetation titers of daptomycin-treated rabbits were significantly lower than those of rabbits treated with tedizolid phosphate (15 mg/kg b.i.d.) (P= 0.016), whereas titers for vancomycin-treated compared to tedizolid-treated rabbits were not different (P= 0.984). The numbers of organisms in spleen and kidney tissues were similar for all treatment groups. A dose-ranging experiment was performed with tedizolid phosphate (2, 4, and 8 mg/kg b.i.d.) compared to vancomycin (30 mg/kg b.i.d.), using a higher infecting inoculum (108CFU) to determine the lowest efficacious dose of tedizolid phosphate. Tedizolid phosphate (2 mg/kg) (equivalent to 60% of the area under the concentration-time curve from 0 to 24 h (AUC0–24) for the human 200-mg dose approved by the U.S. Food and Drug Administration) was not efficacious. Tedizolid phosphate at 4 mg/kg (equivalent to 75% of the AUC0–24for the human 400-mg dose) and 8 mg/kg produced lower vegetation titers than the control, but neither was as efficacious as vancomycin.


2019 ◽  
Vol 63 (7) ◽  
Author(s):  
Alexander J. Lepak ◽  
Miao Zhao ◽  
Karen Marchillo ◽  
Jamie VanHecker ◽  
David R. Andes

ABSTRACT Omadacycline is a novel aminomethylcycline antibiotic with potent activity against Staphylococcus aureus, including methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). We investigated the pharmacodynamic activity of omadacycline against 10 MSSA/MRSA strains in a neutropenic murine thigh model. The median 24-h area under the concentration-time curve (AUC)/MIC values associated with net stasis and 1-log kill were 21.9 and 57.7, respectively.


2012 ◽  
Vol 56 (11) ◽  
pp. 5916-5922 ◽  
Author(s):  
Alexander J. Lepak ◽  
Karen Marchillo ◽  
Solen Pichereau ◽  
William A. Craig ◽  
David R. Andes

ABSTRACTTedizolid phosphate (TR-701) is a novel oxazolidinone prodrug (converted to the active form tedizolid [TR-700]) with potentStaphylococcus aureusactivity. The current studies characterized and compared thein vivopharmacokinetic/pharmacodynamic (PD) characteristics of TR-701/TR-700 and linezolid against methicillin-susceptibleS. aureus(MSSA) and methicillin-resistantS. aureus(MRSA) in the neutropenic murine pneumonia model. The pharmacokinetic properties of both drugs were linear over a dose range of 0.625 to 40 mg/kg of body weight. Protein binding was 30% for linezolid and 85% for TR-700. Mice were infected with one of 11 isolates ofS. aureus, including MSSA and community- and hospital-acquired MRSA strains. Each drug was administered by oral-gastric gavage every 12 h (q12h). The dosing regimens ranged from 1.25 to 80 mg/kg/12 h for linezolid and 0.625 to 160 mg/kg/12 h for TR-701. At the start of therapy, mice had 6.24 ± 0.40 log10CFU/lungs, which increased to 7.92 ± 1.02 log10CFU/lungs in untreated animals over a 24-h period. A sigmoid maximum-effect (Emax) model was used to determine the antimicrobial exposure associated with net stasis (static dose [SD]) and 1-log-unit reduction in organism relative to the burden at the start of therapy. The static dose pharmacodynamic targets for linezolid and TR-700 were nearly identical, at a free drug (non-protein-bound) area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC ratio) of 19 and 20, respectively. The 1-log-unit kill endpoints were also similar, at 46.1 for linezolid and 34.6 for TR-700. The exposure targets were also comparable for both MSSA and MRSA isolates. These dosing goals support further clinical trial examination of TR-701 in MSSA and MRSA pneumonia.


2019 ◽  
Vol 63 (8) ◽  
Author(s):  
Sachin S. Bhagwat ◽  
Hariharan Periasamy ◽  
Swapna S. Takalkar ◽  
Rajesh Chavan ◽  
Pavan Tayde ◽  
...  

ABSTRACT Levonadifloxacin is a novel benzoquinolizine subclass of fluoroquinolone, active against quinolone-resistant Staphylococcus aureus. A phase 3 trial for levonadifloxacin and its oral prodrug was recently completed. The present study identified area under the concentration-time curve for the free, unbound fraction of a drug divided by the MIC (fAUC/MIC) as an efficacy determinant for levonadifloxacin in a neutropenic murine lung infection model. Mean plasma fAUC/MIC requirement for static and 1 log10 kill effects against 9 S. aureus were 8.1 ± 6.0 and 25.8 ± 12.3, respectively. These targets were employed in the selection of phase 3 doses.


2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Vien T. M. Le ◽  
Hoan N. Le ◽  
Marcos Gabriel Pinheiro ◽  
Kenneth J. Hahn ◽  
Mary L. Dinh ◽  
...  

ABSTRACT The protective efficacy of tedizolid phosphate, a novel oxazolidinone that potently inhibits bacterial protein synthesis, was compared to those of linezolid, vancomycin, and saline in a rabbit model of Staphylococcus aureus necrotizing pneumonia. Tedizolid phosphate was administered to rabbits at 6 mg/kg of body weight intravenously twice daily, which yielded values of the 24-h area under the concentration-time curve approximating those found in humans. The overall survival rate was 83% for rabbits treated with 6 mg/kg tedizolid phosphate twice daily and 83% for those treated with 50 mg/kg linezolid thrice daily (P = 0.66 by the log-rank test versus the results obtained with tedizolid phosphate). These survival rates were significantly greater than the survival rates of 17% for rabbits treated with 30 mg/kg vancomycin twice daily (P = 0.003) and 17% for rabbits treated with saline (P = 0.002). The bacterial count in the lungs of rabbits treated with tedizolid phosphate was significantly decreased compared to that in the lungs of rabbits treated with saline, although it was not significantly different from that in the lungs of rabbits treated with vancomycin or linezolid. The in vivo bacterial production of alpha-toxin and Panton-Valentine leukocidin, two key S. aureus-secreted toxins that play critical roles in the pathogenesis of necrotizing pneumonia, in the lungs of rabbits treated with tedizolid phosphate and linezolid was significantly inhibited compared to that in the lungs of rabbits treated with vancomycin or saline. Taken together, these results indicate that tedizolid phosphate is superior to vancomycin for the treatment of S. aureus necrotizing pneumonia because it inhibits the bacterial production of lung-damaging toxins at the site of infection.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Ximena Castañeda ◽  
Cristina García-de-la-Mària ◽  
Oriol Gasch ◽  
Juan M. Pericas ◽  
Yolanda Armero ◽  
...  

ABSTRACT The aim of this in vivo study was to compare the efficacy of vancomycin at standard doses (VAN-SD) to that of VAN at adjusted doses (VAN-AD) in achieving a VAN area under the curve/MIC ratio (AUC/MIC) of ≥400 against three methicillin-resistant Staphylococcus aureus (MRSA) strains with different microdilution VAN MICs in an experimental endocarditis model. The valve vegetation bacterial counts after 48 h of VAN therapy were compared, and no differences were observed between the two treatment groups for any of the three strains tested. Overall, for VAN-SD and VAN-AD, the rates of sterile vegetations were 15/45 (33.3%) and 21/49 (42.8%) (P = 0.343), while the medians (interquartile ranges [IQRs]) for log10 CFU/g of vegetation were 2 (0 to 6.9) and 2 (0 to 4.5) (P = 0.384), respectively. In conclusion, this VAN AUC/MIC pharmacodynamic target was not a good predictor of vancomycin efficacy in MRSA experimental endocarditis.


2016 ◽  
Vol 60 (10) ◽  
pp. 5688-5694 ◽  
Author(s):  
Daniel G. Meeker ◽  
Karen E. Beenken ◽  
Weston B. Mills ◽  
Allister J. Loughran ◽  
Horace J. Spencer ◽  
...  

ABSTRACTWe usedin vitroandin vivomodels of catheter-associated biofilm formation to compare the relative activity of antibiotics effective against methicillin-resistantStaphylococcus aureus(MRSA) in the specific context of an established biofilm. The results demonstrated that, underin vitroconditions, daptomycin and ceftaroline exhibited comparable activity relative to each other and greater activity than vancomycin, telavancin, oritavancin, dalbavancin, or tigecycline. This was true when assessed using established biofilms formed by the USA300 methicillin-resistant strain LAC and the USA200 methicillin-sensitive strain UAMS-1. Oxacillin exhibited greater activity against UAMS-1 than LAC, as would be expected, since LAC is an MRSA strain. However, the activity of oxacillin was less than that of daptomycin and ceftaroline even against UAMS-1. Among the lipoglycopeptides, telavancin exhibited the greatest overall activity. Specifically, telavancin exhibited greater activity than oritavancin or dalbavancin when tested against biofilms formed by LAC and was the only lipoglycopeptide capable of reducing the number of viable bacteria below the limit of detection. With biofilms formed by UAMS-1, telavancin and dalbavancin exhibited comparable activity relative to each other and greater activity than oritavancin. Importantly, ceftaroline was the only antibiotic that exhibited greater activity than vancomycin when testedin vivoin a murine model of catheter-associated biofilm formation. These results emphasize the need to consider antibiotics other than vancomycin, most notably, ceftaroline, for the treatment of biofilm-associatedS. aureusinfections, including by the matrix-based antibiotic delivery methods often employed for local antibiotic delivery in the treatment of these infections.


Sign in / Sign up

Export Citation Format

Share Document