scholarly journals First Isolation of the blaOXA-23 Carbapenemase Gene from an Environmental Acinetobacter baumannii Isolate

2009 ◽  
Vol 54 (1) ◽  
pp. 578-579 ◽  
Author(s):  
Delphine Girlich ◽  
Laurent Poirel ◽  
Patrice Nordmann
2016 ◽  
Vol 4 (3) ◽  
Author(s):  
Semiramis Castro-Jaimes ◽  
Abraham David Salgado-Camargo ◽  
Lucía Graña-Miraglia ◽  
Luis Lozano ◽  
Paola Bocanegra-Ibarias ◽  
...  

Acinetobacter baumannii has emerged as a dangerous nosocomial pathogen, particularly for severely ill patients in intensive care units and patients with hematologic malignancies. Here, we present the complete genome sequence of a multidrug-resistant A. baumannii isolate, recovered from a Mexican hospital and classified as sequence type 422 according to the multilocus sequence typing Pasteur scheme.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gamal Wareth ◽  
Christian Brandt ◽  
Lisa D. Sprague ◽  
Heinrich Neubauer ◽  
Mathias W. Pletz

Abstract Background Acinetobacter baumannii ability to develop and acquire resistance makes it one of the most critical nosocomial pathogens globally. Whole-genome sequencing (WGS) was applied to identify the acquired or mutational variants of antimicrobial resistance (AMR) genes in 85 German A. baumannii strains utilizing Illumina technology. Additionally, the whole genome of 104 German isolates deposited in the NCBI database was investigated. Results In-silico analysis of WGS data revealed wide varieties of acquired AMR genes mediating resistance mostly to aminoglycosides, cephalosporins, carbapenems, sulfonamides, tetracyclines and macrolides. In the 189 analyzed genomes, the ant (3″)-IIa conferring resistance to aminoglycosides was the most frequent (55%), followed by blaADC.25 (38.6%) conferring resistance to cephalosporin, blaOXA-23 (29%) and the blaOXA-66 variant of the intrinsic blaOXA-51-likes (26.5%) conferring resistance to carbapenems, the sul2 (26%) conferring resistance to sulfonamides, the tet. B (19.5%) conferring resistance to tetracycline, and mph. E and msr. E (19%) conferring resistance to macrolides. blaTEM variants conferring resistance to cephalosporins were found in 12% of genomes. Thirteen variants of the intrinsic blaOXA-51 carbapenemase gene, blaOXA-510 and blaADC-25 genes were found in isolates obtained from dried milk samples. Conclusion The presence of strains harboring acquired AMR genes in dried milk raises safety concerns and highlights the need for changes in producing dried milk. Acquired resistance genes and chromosomal gene mutation are successful routes for disseminating AMR determinants among A. baumannii. Identification of chromosomal and plasmid-encoded AMR in the genome of A. baumannii may help understand the mechanism behind the genetic mobilization and spread of AMR genes.


2013 ◽  
Vol 18 (31) ◽  
Author(s):  
J W Decousser ◽  
C Jansen ◽  
P Nordmann ◽  
A Emirian ◽  
R A Bonnin ◽  
...  

We report the first outbreak of carbapenem-resistant NDM-1-producing Acinetobacter baumannii in Europe, in a French intensive-care unit in January to May 2013. The index patient was transferred from Algeria and led to the infection/colonisation of five additional patients. Concurrently, another imported case from Algeria was identified. The seven isolates were genetically indistinguishable, belonging to ST85. The blaNDM-1 carbapenemase gene was part of the chromosomally located composite transposon Tn125. This report underscores the growing concern about the spread of NDM-1-producing A. baumannii in Europe.


2016 ◽  
Vol 05 (06) ◽  
pp. 552-556 ◽  
Author(s):  
Noha Salah Elsayed ◽  
Khaled Mohamed Aboshanab ◽  
Mohammad Mohammad Aboulwafa ◽  
Nadia Abdelhaleem Hassouna

2008 ◽  
Vol 52 (11) ◽  
pp. 3837-3843 ◽  
Author(s):  
Jennifer M. Adams-Haduch ◽  
David L. Paterson ◽  
Hanna E. Sidjabat ◽  
Anthony W. Pasculle ◽  
Brian A. Potoski ◽  
...  

ABSTRACT A total of 49 unique clinical isolates of multidrug-resistant (MDR) Acinetobacter baumannii identified at a tertiary medical center in Pittsburgh, Pennsylvania, between August 2006 and September 2007 were studied for the genetic basis of their MDR phenotype. Approximately half of all A. baumannii clinical isolates identified during this period qualified as MDR, defined by nonsusceptibility to three or more of the antimicrobials routinely tested in the clinical microbiology laboratory. Among the MDR isolates, 18.4% were resistant to imipenem. The frequencies of resistance to amikacin and ciprofloxacin were high at 36.7% and 95.9%, respectively. None of the isolates was resistant to colistin or tigecycline. The presence of the carbapenemase gene bla OXA-23 and the 16S rRNA methylase gene armA predicted high-level resistance to imipenem and amikacin, respectively. bla OXA-23 was preceded by insertion sequence ISAba1, which likely provided a potent promoter activity for the expression of the carbapenemase gene. The structure of the transposon defined by ISAba1 differed from those reported in Europe, suggesting that ISAba1-mediated acquisition of bla OXA-23 may occur as an independent event. Typical substitutions in the quinolone resistance-determining regions of the gyrA and parC genes were observed in the ciprofloxacin-resistant isolates. Plasmid-mediated quinolone resistance genes, including the qnr genes, were not identified. Fifty-nine percent of the MDR isolates belonged to a single clonal group over the course of the study period, as demonstrated by pulsed-field gel electrophoresis.


2006 ◽  
Vol 44 (8) ◽  
pp. 2974-2976 ◽  
Author(s):  
J. F. Turton ◽  
N. Woodford ◽  
J. Glover ◽  
S. Yarde ◽  
M. E. Kaufmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document