scholarly journals Lack of Artemisinin Resistance in Plasmodium falciparum in Uganda Based on Parasitological and Molecular Assays

2015 ◽  
Vol 59 (8) ◽  
pp. 5061-5064 ◽  
Author(s):  
Roland A. Cooper ◽  
Melissa D. Conrad ◽  
Quentin D. Watson ◽  
Stephanie J. Huezo ◽  
Harriet Ninsiima ◽  
...  

ABSTRACTWe evaluated markers of artemisinin resistance inPlasmodium falciparumisolated in Kampala in 2014. By standardin vitroassays, all isolates were highly sensitive to dihydroartemisinin (DHA). By the ring-stage survival assay, after a 6-h DHA pulse, parasitemia was undetectable in 40 of 43 cultures at 72 h. Two of 53 isolates had nonsynonymous K13-propeller gene polymorphisms but did not have the mutations associated with resistance in Asia. Thus, we did not see evidence for artemisinin resistance in Uganda.

2019 ◽  
Vol 64 (1) ◽  
Author(s):  
Ryan C. Henrici ◽  
Donelly A. van Schalkwyk ◽  
Colin J. Sutherland

ABSTRACT Management of uncomplicated malaria worldwide is threatened by the emergence in Asia of Plasmodium falciparum carrying variants of the pfk13 locus and exhibiting reduced susceptibility to artemisinin. Mutations in two other genes, ubp1 and ap2μ, are associated with artemisinin resistance in rodent malaria and with clinical failure of combination therapy in African malaria patients. Transgenic P. falciparum clones, each carrying orthologues of mutations in pfap2μ and pfubp1 associated with artemisinin resistance in Plasmodium chabaudi, were derived by Cas9 gene editing. Susceptibility to artemisinin and other antimalarial drugs was determined. Following exposure to 700 nM dihydroartemisinin in the ring-stage survival assay, we found strong evidence that transgenic parasites expressing the I592T variant (11% survival), but not the S160N variant (1% survival), of the AP2μ adaptin subunit were significantly less susceptible than the parental wild-type parasite population. The V3275F variant of UBP1, but not the V3306F variant, also displayed reduced susceptibility to dihydroartemisinin (8.5% survival versus 0.5% survival). AP2μ and UBP1 variants did not elicit reduced susceptibility to 48 h of exposure to artemisinin or to other antimalarial drugs. Therefore, variants of the AP2 adaptor complex μ-subunit and of the ubiquitin hydrolase UBP1 reduce in vitro artemisinin susceptibility at the early ring stage in P. falciparum. These findings confirm the existence of multiple pathways to perturbation of either the mode of action of artemisinin, the parasite’s adaptive mechanisms of resistance, or both. The cellular role of UBP1 and AP2μ in Plasmodium parasites should now be elucidated.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Faiza Amber Siddiqui ◽  
Rachasak Boonhok ◽  
Mynthia Cabrera ◽  
Huguette Gaelle Ngassa Mbenda ◽  
Meilian Wang ◽  
...  

ABSTRACT Mutations in the Plasmodium falciparum Kelch 13 (PfK13) protein are associated with artemisinin resistance. PfK13 is essential for asexual erythrocytic development, but its function is not known. We tagged the PfK13 protein with green fluorescent protein in P. falciparum to study its expression and localization in asexual and sexual stages. We used a new antibody against PfK13 to show that the PfK13 protein is expressed ubiquitously in both asexual erythrocytic stages and gametocytes and is localized in punctate structures, partially overlapping an endoplasmic reticulum marker. We introduced into the 3D7 strain four PfK13 mutations (F446I, N458Y, C469Y, and F495L) identified in parasites from the China-Myanmar border area and characterized the in vitro artemisinin response phenotypes of the mutants. We found that all the parasites with the introduced PfK13 mutations showed higher survival rates in the ring-stage survival assay (RSA) than the wild-type (WT) control, but only parasites with N458Y displayed a significantly higher RSA value (26.3%) than the WT control. After these PfK13 mutations were reverted back to the WT in field parasite isolates, all revertant parasites except those with the C469Y mutation showed significantly lower RSA values than their respective parental isolates. Although the 3D7 parasites with introduced F446I, the predominant PfK13 mutation in northern Myanmar, did not show significantly higher RSA values than the WT, they had prolonged ring-stage development and showed very little fitness cost in in vitro culture competition assays. In comparison, parasites with the N458Y mutations also had a prolonged ring stage and showed upregulated resistance pathways in response to artemisinin, but this mutation produced a significant fitness cost, potentially leading to their lower prevalence in the Greater Mekong subregion. IMPORTANCE Artemisinin resistance has emerged in Southeast Asia, endangering the substantial progress in malaria elimination worldwide. It is associated with mutations in the PfK13 protein, but how PfK13 mediates artemisinin resistance is not completely understood. Here we used a new antibody against PfK13 to show that the PfK13 protein is expressed in all stages of the asexual intraerythrocytic cycle as well as in gametocytes and is partially localized in the endoplasmic reticulum. By introducing four PfK13 mutations into the 3D7 strain and reverting these mutations in field parasite isolates, we determined the impacts of these mutations identified in the parasite populations from northern Myanmar on the ring stage using the in vitro ring survival assay. The introduction of the N458Y mutation into the 3D7 background significantly increased the survival rates of the ring-stage parasites but at the cost of the reduced fitness of the parasites. Introduction of the F446I mutation, the most prevalent PfK13 mutation in northern Myanmar, did not result in a significant increase in ring-stage survival after exposure to dihydroartemisinin (DHA), but these parasites showed extended ring-stage development. Further, parasites with the F446I mutation showed only a marginal loss of fitness, partially explaining its high frequency in northern Myanmar. Conversely, reverting all these mutations, except for the C469Y mutation, back to their respective wild types reduced the ring-stage survival of these isolates in response to in vitro DHA treatment.


2014 ◽  
Vol 58 (8) ◽  
pp. 4935-4937 ◽  
Author(s):  
Chanaki Amaratunga ◽  
Benoit Witkowski ◽  
Dalin Dek ◽  
Vorleak Try ◽  
Nimol Khim ◽  
...  

ABSTRACTReducedPlasmodium falciparumsensitivity to short-course artemisinin (ART) monotherapy manifests as a long parasite clearance half-life. We recently defined three parasite founder populations with long half-lives in Pursat, western Cambodia, where reduced ART sensitivity is prevalent. Using the ring-stage survival assay, we show that these founder populations have reduced ART sensitivityin vitroat the early ring stage of parasite development and that a genetically admixed population contains subsets of parasites with normal or reduced ART sensitivity.


2011 ◽  
Vol 56 (1) ◽  
pp. 428-431 ◽  
Author(s):  
Franka Teuscher ◽  
Nanhua Chen ◽  
Dennis E. Kyle ◽  
Michelle L. Gatton ◽  
Qin Cheng

ABSTRACTThe appearance ofPlasmodium falciparumparasites with decreasedin vivosensitivity but no measurablein vitroresistance to artemisinin has raised the urgent need to characterize the artemisinin resistance phenotype. Changes in the temporary growth arrest (dormancy) profile of parasites may be one aspect of this phenotype. In this study, we investigated the link between dormancy and resistance, using artelinic acid (AL)-resistant parasites. Our results demonstrate that the AL resistance phenotype has (i) decreased sensitivity of mature-stage parasites, (ii) decreased sensitivity of the ring stage to the induction of dormancy, and (iii) a faster recovery from dormancy.


2016 ◽  
Vol 60 (9) ◽  
pp. 5167-5174 ◽  
Author(s):  
Marina Chavchich ◽  
Karin Van Breda ◽  
Kerryn Rowcliffe ◽  
Thierry T. Diagana ◽  
Michael D. Edstein

ABSTRACTIn vitrodrug treatment with artemisinin derivatives, such as dihydroartemisinin (DHA), results in a temporary growth arrest (i.e., dormancy) at an early ring stage inPlasmodium falciparum. This response has been proposed to play a role in the recrudescence ofP. falciparuminfections following monotherapy with artesunate and may contribute to the development of artemisinin resistance inP. falciparummalaria. We demonstrate here that artemether does induce dormant rings, a finding which further supports the class effect of artemisinin derivatives in inducing the temporary growth arrest ofP. falciparumparasites. In contrast and similarly to lumefantrine, the novel and fast-acting spiroindolone compound KAE609 does not induce growth arrest at the early ring stage ofP. falciparumand prevents the recrudescence of DHA-arrested rings at a low concentration (50 nM). Our findings, together with previous clinical data showing that KAE609 is active against artemisinin-resistant K13 mutant parasites, suggest that KAE609 could be an effective partner drug with a broad range of antimalarials, including artemisinin derivatives, in the treatment of multidrug-resistantP. falciparummalaria.


Author(s):  
Lucie Paloque ◽  
Romain Coppée ◽  
Barbara H. Stokes ◽  
Nina F. Gnädig ◽  
Karamoko Niaré ◽  
...  

Partial artemisinin resistance, defined in patients as a delayed parasite clearance following artemisinin-based treatment, is conferred by non-synonymous mutations in the Kelch beta-propeller domain of the Plasmodium falciparum k13 ( pfk13 ) gene. Here, we carried out in vitro selection over a one-year period on a West African P. falciparum strain isolated from Kolle (Mali) under a dose-escalating artemisinin regimen. After 18 cycles of sequential drug pressure, the selected parasites exhibited enhanced survival to dihydroartemisinin in the ring-stage survival assay (RSA 0-3h = 9.2%). Sanger and whole-genome sequence analyses identified the PfK13 P413A mutation, localized in the BTB/POZ domain, upstream of the propeller domain. This mutation was sufficient to confer in vitro artemisinin resistance when introduced into the PfK13 coding sequence of the parasite strain Dd2 by CRISPR/Cas9 gene editing. These results together with structural studies of the protein demonstrate that the propeller domain is not the sole in vitro mediator of PfK13-mediated artemisinin resistance, and highlight the importance of monitoring for mutations throughout PfK13.


2020 ◽  
Vol 65 (1) ◽  
pp. e00720-20
Author(s):  
Haddijatou Mbye ◽  
Fatoumata Bojang ◽  
Aminata Seedy Jawara ◽  
Bekai Njie ◽  
Nuredin Ibrahim Mohammed ◽  
...  

ABSTRACTMonitoring of Plasmodium falciparum sensitivity to antimalarial drugs in Africa is vital for malaria elimination. However, the commonly used ex vivo/in vitro 50% inhibitory concentration (IC50) test gives inconsistent results for several antimalarials, while the alternative ring-stage survival assay (RSA) for artemisinin derivatives has not been widely adopted. Here, we applied an alternative two-color flow cytometry-based parasite survival rate assay (PSRA) to detect ex vivo antimalarial tolerance in P. falciparum isolates from The Gambia. The PSRA infers parasite viability by quantifying reinvasion of uninfected cells following 3 consecutive days of drug exposure (10-fold the IC50 of drug for field isolates). The drug survival rate is obtained for each isolate from the slope of the growth/death curve. We obtained parasite survival rates of 41 isolates for dihydroartemisinin (DHA) and lumefantrine (LUM) out of 51 infections tested by ring-stage survival assay (RSA) against DHA. We also determined the genotypes for known drug resistance genetic loci in the P. falciparum genes Pfdhfr, Pfdhps, Pfmdr, Pfcrt, and Pfk13. The PSRA results determined for 41 Gambian isolates showed faster killing and lower variance after treatment with DHA than after treatment with LUM, despite a strong correlation between the two drugs. Four and three isolates were tolerant to DHA and LUM, respectively, with continuous growth during drug exposure. Isolates with the PfMDR1-Y184F mutant variant showed increased LUM survival, though the results were not statistically significant. Sulfadoxine/pyrimethamine (SP) resistance markers were fixed, while all other antimalarial variants were prevalent in more than 50% of the population. The PSRA detected ex vivo antimalarial tolerance in Gambian P. falciparum. This calls for its wider application and for increased vigilance against resistance to artemisinin combination therapies (ACTs) in this population.


2014 ◽  
Vol 58 (12) ◽  
pp. 7049-7055 ◽  
Author(s):  
Kamala Thriemer ◽  
Nguyen Van Hong ◽  
Anna Rosanas-Urgell ◽  
Bui Quang Phuc ◽  
Do Manh Ha ◽  
...  

ABSTRACTReduced susceptibility ofPlasmodium falciparumtoward artemisinin derivatives has been reported from the Thai-Cambodian and Thai-Myanmar borders. Following increasing reports from central Vietnam of delayed parasite clearance after treatment with dihydroartemisinin-piperaquine (DHA-PPQ), the current first-line treatment, we carried out a study on the efficacy of this treatment. Between September 2012 and February 2013, we conducted a 42-dayin vivoandin vitroefficacy study in Quang Nam Province. Treatment was directly observed, and blood samples were collected twice daily until parasite clearance. In addition, genotyping, quantitative PCR (qPCR), andin vitrosensitivity testing of isolates was performed. The primary endpoints were parasite clearance rate and time. The secondary endpoints included PCR-corrected and uncorrected cure rates, qPCR clearance profiles,in vitrosensitivity results (for chloroquine, dihydroartemisinin, and piperaquine), and genotyping for mutations in the Kelch 13 propeller domain. Out of 672 screened patients, 95 were recruited and 89 available for primary endpoint analyses. The median parasite clearance time (PCT) was 61.7 h (interquartile range [IQR], 47.6 to 83.2 h), and the median parasite clearance rate had a slope half-life of 6.2 h (IQR, 4.4 to 7.5 h). The PCR-corrected efficacy rates were estimated at 100% at day 28 and 97.7% (95% confidence interval, 91.2% to 99.4%) at day 42. At day 3, theP. falciparumprevalence by qPCR was 2.5 times higher than that by microscopy. The 50% inhibitory concentrations (IC50s) of isolates with delayed clearance times (≥72 h) were significantly higher than those with normal clearance times for all three drugs. Delayed parasite clearance (PCT, ≥72 h) was significantly higher among day 0 samples carrying the 543 mutant allele (47.8%) than those carrying the wild-type allele (1.8%;P= 0.048). In central Vietnam, the efficacy of DHA-PPQ is still satisfactory, but the parasite clearance time and rate are indicative of emerging artemisinin resistance. (This study has been registered at ClinicalTrials.gov under registration no. NCT01775592.)


2018 ◽  
Vol 62 (5) ◽  
Author(s):  
Kimberly F. Breglio ◽  
Rifat S. Rahman ◽  
Juliana M. SÃ ◽  
Amanda Hott ◽  
David J. Roberts ◽  
...  

ABSTRACT Some Kelch mutations of the Plasmodium falciparum K13 protein confer increased survival to dihydroartemisinin (DHA)-treated ring-stage parasites. Here, we asked if K13 mutations affect a dormancy phenotype allowing parasites to survive DHA exposure and then sorbitol selection. Although recrudescence from dormancy differed between two distinct parasite lines, it was similar for isogenic lines carrying single-site substitutions in K13. Therefore, K13 mutations do not alter the DHA-sorbitol combined dormancy phenotype; rather, traits from other loci likely determine this phenotype.


2019 ◽  
Author(s):  
Sage Z. Davis ◽  
Puspendra P. Singh ◽  
Katelyn M. Vendrely ◽  
Douglas A. Shoue ◽  
Lisa A. Checkley ◽  
...  

Abstract Background Tracking and understanding artemisinin resistance is key for preventing global setbacks in malaria eradication efforts. The ring-stage survival assay (RSA) is the current gold standard for in vitro artemisinin resistance phenotyping. However, the RSA has several drawbacks: it is relatively low throughput, has high variance due to microscopy readout, and correlates poorly with the current benchmark for in vivo resistance, patient clearance half-life post-artemisinin treatment. Here a modified RSA is presented, the extended Recovery Ring-stage Survival Assay (eRRSA), using 15 cloned patient isolates from Southeast Asia with a range of patient clearance half-lives, including parasite isolates with and without kelch13 mutations. Methods P. falciparum cultures were synchronized with single layer Percoll during the schizont stage of the erythrocytic cycle. Cultures were left to reinvade to early ring-stage and parasitemia was quantified using flow cytometry. Cultures were diluted to 2% hematocrit and 0.5% parasitemia in a 96-well plate to start the assay, allowing for increased throughput and decreased variability between biological replicates. Parasites were treated with 700nM of dihydroartemisinin or an equivalent amount of dimethyl sulfoxide (DMSO) for 6 h, washed three times in drug-free media, and incubated for 66 or 114 h, when samples were collected and frozen for PCR amplification. A SYBR Green-based quantitative PCR method was used to quantify the fold-change between treated and untreated samples. Results 15 cloned patient isolates from Southeast Asia with a range of patient clearance half-lives were assayed using the eRRSA. Due to the large number of pyknotic and dying parasites at 66 h post-exposure (72 h sample), parasites were grown for an additional cell cycle (114 h post-exposure, 120 h sample), which drastically improved correlation with patient clearance half-life compared to the 66 h post-exposure sample. A Spearman correlation of 0.8393 between fold change and patient clearance half-life was identified in these 15 isolates from Southeast Asia, which is the strongest correlation reported to date. Conclusions eRRSA drastically increases the efficiency and accuracy of in vitro artemisinin resistance phenotyping compared to the traditional RSA, which paves the way for extensive in vitro phenotyping of hundreds of artemisinin resistant parasites.


Sign in / Sign up

Export Citation Format

Share Document