scholarly journals Selection of Mutations To Detect Multidrug-Resistant Mycobacterium tuberculosis Strains in Shanghai, China

2009 ◽  
Vol 54 (3) ◽  
pp. 1075-1081 ◽  
Author(s):  
Tao Luo ◽  
Ming Zhao ◽  
Xia Li ◽  
Peng Xu ◽  
Xiaohong Gui ◽  
...  

ABSTRACT Novel tools are urgently needed for the rapid, reliable detection of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis. To develop such tools, we need information about the frequency and distribution of the mycobacterial mutations and genotypes that are associated with phenotypic drug resistance. In a population-based study, we sequenced specific genes of M. tuberculosis that were associated with resistance to rifampin and isoniazid in 242 phenotypically MDR isolates and 50 phenotypically pan-susceptible isolates from tuberculosis (TB) cases in Shanghai, China. We estimated the sensitivity and specificity of the mutations, using the results of conventional, culture-based phenotypic drug susceptibility testing as the standard. We detected mutations within the 81-bp core region of rpoB in 96.3% of phenotypically MDR isolates. Mutations in two structural genes (katG and inhA) and two regulatory regions (the promoter of mabA-inhA and the intergenic region of oxyR-ahpC) were found in 89.3% of the MDR isolates. In total, 88.0% (213/242 strains) of the phenotypic MDR strains were confirmed by mutations in the sequenced regions. Mutations in embB306 were also considered a marker for MDR and significantly increased the sensitivity of the approach. Based on our findings, an approach that prospectively screens for mutations in 11 sites of the M. tuberculosis genome (rpoB531, rpoB526, rpoB516, rpoB533, and rpoB513, katG315, inhA-15, ahpC-10, ahpC-6, and ahpC-12, and embB306) could detect 86.8% of MDR strains in Shanghai. This study lays the foundation for the development of a rapid, reliable molecular genetic test to detect MDR strains of M. tuberculosis in China.

2014 ◽  
Vol 59 (1) ◽  
pp. 444-449 ◽  
Author(s):  
Analise Z. Reeves ◽  
Patricia J. Campbell ◽  
Melisa J. Willby ◽  
James E. Posey

ABSTRACTAs the prevalence of multidrug-resistant and extensively drug-resistant tuberculosis strains continues to rise, so does the need to develop accurate and rapid molecular tests to complement time-consuming growth-based drug susceptibility testing. Performance of molecular methods relies on the association of specific mutations with phenotypic drug resistance and while considerable progress has been made for resistance detection of first-line antituberculosis drugs, rapid detection of resistance for second-line drugs lags behind. TherrsA1401G allele is considered a strong predictor of cross-resistance between the three second-line injectable drugs, capreomycin (CAP), kanamycin, and amikacin. However, discordance is often observed between therrsA1401G mutation and CAP resistance, with up to 40% ofrrsA1401G mutants being classified as CAP susceptible. We measured the MICs to CAP in 53 clinical isolates harboring therrsA1401G mutation and found that the CAP MICs ranged from 8 μg/ml to 40 μg/ml. These results were drastically different from engineered A1401G mutants generated in isogenicMycobacterium tuberculosis, which exclusively exhibited high-level CAP MICs of 40 μg/ml. These data support the results of prior studies, which suggest that the critical concentration of CAP (10 μg/ml) used to determine resistance by indirect agar proportion may be too high to detect all CAP-resistant strains and suggest that a larger percentage of resistant isolates could be identified by lowering the critical concentration. These data also suggest that differences in resistance levels among clinical isolates are possibly due to second site or compensatory mutations located elsewhere in the genome.


Author(s):  
Isabelle Bonnet ◽  
Vincent Enouf ◽  
Florence Morel ◽  
Vichita Ok ◽  
Jérémy Jaffré ◽  
...  

The GeneLEAD VIII (Diagenode, Belgium) is a new, fully automated, sample-to-result precision instrument for the extraction of DNA and PCR detection of Mycobacterium tuberculosis complex (MTBC) directly from clinical samples. The Deeplex Myc-TB® assay (Genoscreen, France) is a diagnostic kit based on the deep sequencing of a 24-plexed amplicon mix allowing simultaneously the detection of resistance to 13 antituberculous (antiTB) drugs and the determination of spoligotype. We evaluated the performance of a strategy combining the both mentioned tools to detect directly from clinical samples, in 8 days, MTBC and its resistance to 13 antiTB drugs, and identify potential transmission of strains from patient-to-patient. Using this approach, we screened 112 clinical samples (65 smear-negative) and 94 MTBC cultured strains. The sensitivity and the specificity of the GeneLEAD/Deeplex Myc-TB approach for MTBC detection were 79.3% and 100%, respectively. One hundred forty successful Deeplex Myc-TB results were obtained for 46 clinical samples and 94 strains, a total of 85.4% of which had a Deeplex Myc-TB susceptibility and resistance prediction consistent with phenotypic drug susceptibility testing (DST). Importantly, the Deeplex Myc-TB assay was able to detect 100% of the multidrug-resistant (MDR) MTBC tested. The lowest concordance rates were for pyrazinamide, ethambutol, streptomycin, and ethionamide (84.5%, 81.5%, 73%, and 55%, respectively) for which the determination of susceptibility or resistance is generally difficult with current tools. One of the main difficulties of Deeplex Myc-TB is to interpret the non-synonymous uncharacterized variants that can represent up to 30% of the detected single nucleotide variants. We observed a good level of concordance between Deeplex Myc-TB-spoligotyping and MIRU-VNTR despite a lower discriminatory power for spoligotyping. The median time to obtain complete results from clinical samples was 8 days (IQR 7–13) provided a high-throughput NGS sequencing platform was available. Our results highlight that the GeneLEAD/Deeplex Myc-TB approach could be a breakthrough in rapid diagnosis of MDR TB in routine practice.


2021 ◽  
Vol 49 (3) ◽  
pp. 030006052199759
Author(s):  
Mei-Chun Zeng ◽  
Qing-Jun Jia ◽  
Lei-Ming Tang

Objective The aim was to analyze genetic mutations in the rpoB gene of rifampin-resistant Mycobacterium tuberculosis isolates (RIFR-MTB) from Zhejiang, China. Methods We prospectively analyzed RIFR-associated mutations in 13 rural areas of Zhejiang. Isolates were subjected to species identification, phenotype drug susceptibility testing (DST), DNA extraction, and rpoB gene sequencing. Results A total of 103 RIFR isolates were identified by DST (22 RIFR only, 14 poly-drug resistant, 49 multidrug resistant, 13 pre-extensively drug resistant [pre-XDR], and 5 extensively drug resistant [XDR]) from 2152 culture-positive sputum specimens. Gene sequencing of rpoB showed that the most frequent mutation was S450L (37.86%, 39/103); mutations P280L, E521K, and D595Y were outside the rifampicin resistance-determining region (RRDR) but may be associated with RIFR. Mutations associated with poly-drug resistant, pre-XDR, and XDR TB were mainly located at codon 445 or 450 in the RRDR. Conclusions The frequency of rpoB RRDR mutation in Zhejiang is high. Further studies are needed to clarify the relationships between RIFR and the TTC insertion at codon 433 in the RRDR and the P280L and D595Y mutations outside the RRDR.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Anne-Marie Demers ◽  
◽  
Soyeon Kim ◽  
Sara McCallum ◽  
Kathleen Eisenach ◽  
...  

Abstract Background Drug susceptibility testing (DST) patterns of Mycobacterium tuberculosis (MTB) from patients with rifampicin-resistant tuberculosis (RR-TB) or multidrug-resistant TB (MDR-TB; or resistant to rifampicin and isoniazid (INH)), are important to guide preventive therapy for their household contacts (HHCs). Methods As part of a feasibility study done in preparation for an MDR-TB preventive therapy trial in HHCs, smear, Xpert MTB/RIF, Hain MTBDRplus, culture and DST results of index MDR-TB patients were obtained from routine TB programs. A sputum sample was collected at study entry and evaluated by the same tests. Not all tests were performed on all specimens due to variations in test availability. Results Three hundred eight adults with reported RR/MDR-TB were enrolled from 16 participating sites in 8 countries. Their median age was 36 years, and 36% were HIV-infected. Routine testing on all 308 were confirmed as having RR-TB, but only 75% were documented as having MDR-TB. The majority of those not classified as having MDR-TB were because only rifampicin resistance was tested. At study entry (median 59 days after MDR-TB treatment initiation), 280 participants (91%) were able to produce sputum for the study, of whom 147 (53%) still had detectable MTB. All but 2 of these 147 had rifampicin DST done, with resistance detected in 89%. Almost half (47%) of the 147 specimens had INH DST done, with 83% resistance. Therefore, 20% of the 280 study specimens had MDR-TB confirmed. Overall, DST for second-line drugs were available in only 35% of the 308 routine specimens and 15% of 280 study specimens. Conclusions RR-TB was detected in all routine specimens but only 75% had documented MDR-TB, illustrating the need for expanded DST beyond Xpert MTB/RIF to target preventive therapy for HHC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Matthias Merker ◽  
Nkongho F. Egbe ◽  
Yannick R. Ngangue ◽  
Comfort Vuchas ◽  
Thomas A. Kohl ◽  
...  

Abstract Background Determining factors affecting the transmission of rifampicin (RR) and multidrug-resistant (MDR) Mycobacterium tuberculosis complex strains under standardized tuberculosis (TB) treatment is key to control TB and prevent the evolution of drug resistance. Methods We combined bacterial whole genome sequencing (WGS) and epidemiological investigations for 37% (n = 195) of all RR/MDR-TB patients in Cameroon (2012–2015) to identify factors associated with recent transmission. Results Patients infected with a strain resistant to high-dose isoniazid, and ethambutol had 7.4 (95% CI 2.6–21.4), and 2.4 (95% CI 1.2–4.8) times increased odds of being in a WGS-cluster, a surrogate for recent transmission. Furthermore, age between 30 and 50 was positively correlated with recent transmission (adjusted OR 3.8, 95% CI 1.3–11.4). We found high drug-resistance proportions against three drugs used in the short standardized MDR-TB regimen in Cameroon, i.e. high-dose isoniazid (77.4%), ethambutol (56.9%), and pyrazinamide (43.1%). Virtually all strains were susceptible to fluoroquinolones, kanamycin, and clofazimine, and treatment outcomes were mostly favourable (87.5%). Conclusion Pre-existing resistance to high-dose isoniazid, and ethambutol is associated with recent transmission of RR/MDR strains in our study. A possible contributing factor for this observation is the absence of universal drug susceptibility testing in Cameroon, likely resulting in prolonged exposure of new RR/MDR-TB patients to sub-optimal or failing first-line drug regimens.


Author(s):  
Jim Werngren ◽  
Mikael Mansjö ◽  
Mikaela Glader ◽  
Sven Hoffner ◽  
Lina Davies Forsman

Heteroresistance is defined as the coexistence of both susceptible and resistant bacteria in a bacterial population. Previously published data show that it may occur in 9-57% of Mycobacterium tuberculosis isolates for various drugs. Pyrazinamide (PZA) is an important first-line drug used for treatment of both drug-susceptible and PZA-susceptible multidrug-resistant TB. Clinical PZA resistance is defined as a proportion of resistant bacteria in the isolate exceeding 10%, when the drug is no longer considered clinically effective. The capability of traditional drug susceptibility testing techniques to detect PZA heteroresistance has not yet been evaluated. The aim of this study was to compare the capacity of BACTEC MGIT 960, Wayne’s test and whole genome sequencing (WGS) to detect PZA resistant subpopulations in bacterial suspensions prepared with different proportions of mutant strains. Both BACTEC MGIT 960 and WGS were able to detect the critical level of 10% PZA heteroresistance whereas Wayne’s test failed to do so, with the latter falsely reporting highly resistant samples as PZA susceptible. Failure to detect drug resistant subpopulations may lead to inadvertently weak treatment regimens if ineffective drugs are included, with the risk of treatment failure with the selective growth of resistant subpopulations. We need clinical awareness of heteroresistance as well as evaluation of new diagnostic tools in their capacity in detecting heteroresistance in TB.


2014 ◽  
Vol 58 (7) ◽  
pp. 3853-3859 ◽  
Author(s):  
Deus Lukoye ◽  
Fred A. Katabazi ◽  
Kenneth Musisi ◽  
David P. Kateete ◽  
Benon B. Asiimwe ◽  
...  

ABSTRACTSurveillance of the circulatingMycobacterium tuberculosiscomplex (MTC) strains in a given locality is important for understanding tuberculosis (TB) epidemiology. We performed molecular epidemiological studies on sputum smear-positive isolates that were collected for anti-TB drug resistance surveillance to establish the variability of MTC lineages with anti-TB drug resistance and HIV infection. Spoligotyping was performed to determine MTC phylogenetic lineages. We compared patients' MTC lineages with drug susceptibility testing (DST) patterns and HIV serostatus. Out of the 533 isolates, 497 (93.2%) had complete DST, PCR, and spoligotyping results while 484 (90.1%) participants had results for HIV testing. Overall, the frequency of any resistance was 75/497 (15.1%), highest among the LAM (34.4%; 95% confidence interval [CI], 18.5 to 53.2) and lowest among the T2 (11.5%; 95% CI, 7.6 to 16.3) family members. By multivariate analysis, LAM (adjusted odds ratio [ORadj], 5.0; 95% CI, 2.0 to 11.9;P< 0.001) and CAS (ORadj, 2.9; 95% CI, 1.4.0 to 6.3;P= 0.006) families were more likely to show any resistance than was T2. All other MTC lineages combined were more likely to be resistant to any of the anti-TB drugs than were the T2 strains (ORadj, 1.7; 95% CI, 1.0 to 2.9;P= 0.040). There were no significant associations between multidrug resistance and MTC lineages, but numbers of multidrug-resistant TB strains were small. No association was established between MTC lineages and HIV status. In conclusion, the T2 MTC lineage negatively correlates with anti-TB drug resistance, which might partly explain the reported low levels of anti-TB drug resistance in Kampala, Uganda. Patients' HIV status plays no role with respect to the MTC lineage distribution.


Sign in / Sign up

Export Citation Format

Share Document