scholarly journals Synergistic Meropenem-Tobramycin Combination Dosage Regimens against Clinical Hypermutable Pseudomonas aeruginosa at Simulated Epithelial Lining Fluid Concentrations in a Dynamic Biofilm Model

2019 ◽  
Vol 63 (11) ◽  
Author(s):  
Hajira Bilal ◽  
Phillip J. Bergen ◽  
Tae Hwan Kim ◽  
Seung Eun Chung ◽  
Anton Y. Peleg ◽  
...  

ABSTRACT Exacerbations of chronic Pseudomonas aeruginosa infections are a major treatment challenge in cystic fibrosis due to biofilm formation and hypermutation. We aimed to evaluate different dosage regimens of meropenem and tobramycin as monotherapies and in combination against hypermutable carbapenem-resistant P. aeruginosa. A hypermutable P. aeruginosa isolate (meropenem and tobramycin MICs, 8 mg/liter) was investigated in the dynamic CDC biofilm reactor over 120 h. Regimens were meropenem as the standard (2 g every 8 h, 30% epithelial lining fluid [ELF] penetration) and as a continuous infusion (CI; 6 g/day, 30% and 60% ELF penetration) and tobramycin at 10 mg/kg of body weight every 24 h (50% ELF penetration). The time courses of totally susceptible and less-susceptible bacteria and MICs were determined, and antibiotic concentrations were quantified by liquid chromatography-tandem mass spectrometry. All monotherapies failed, with the substantial regrowth of planktonic (>6 log10 CFU/ml) and biofilm (≥6 log10 CFU/cm2) bacteria occurring. Except for the meropenem CI (60% ELF penetration), all monotherapies amplified less-susceptible planktonic and biofilm bacteria by 120 h. The meropenem standard regimen with tobramycin caused initial killing followed by considerable regrowth with resistance (meropenem MIC, 64 mg/liter; tobramycin MIC, 32 mg/liter) for planktonic and biofilm bacteria. The combination containing the meropenem CI at both levels of ELF penetration synergistically suppressed the regrowth of total planktonic bacteria and the resistance of planktonic and biofilm bacteria. The combination with the meropenem CI at 60% ELF penetration, in addition, synergistically suppressed the regrowth of total biofilm bacteria. Standard regimens of meropenem and tobramycin were ineffective against planktonic and biofilm bacteria. The combination with meropenem CI exhibited enhanced bacterial killing and resistance suppression of carbapenem-resistant hypermutable P. aeruginosa.

2020 ◽  
Vol 64 (7) ◽  
Author(s):  
Hajira Bilal ◽  
Phillip J. Bergen ◽  
Jessica R. Tait ◽  
Steven C. Wallis ◽  
Anton Y. Peleg ◽  
...  

ABSTRACT Treatment of exacerbations of chronic Pseudomonas aeruginosa infections in patients with cystic fibrosis (CF) is highly challenging due to hypermutability, biofilm formation, and an increased risk of resistance emergence. We evaluated the impact of ciprofloxacin and meropenem as monotherapy and in combination in the dynamic in vitro CDC biofilm reactor (CBR). Two hypermutable P. aeruginosa strains, PAOΔmutS (MIC of ciprofloxacin [MICciprofloxacin], 0.25 mg/liter; MICmeropenem, 2 mg/liter) and CW44 (MICciprofloxacin, 0.5 mg/liter; MICmeropenem, 4 mg/liter), were investigated for 120 h. Concentration-time profiles achievable in epithelial lining fluid (ELF) following FDA-approved doses were simulated in the CBR. Treatments were ciprofloxacin at 0.4 g every 8 h as 1-h infusions (80% ELF penetration), meropenem at 6 g/day as a continuous infusion (CI) (30% and 60% ELF penetration), and their combinations. Counts of total and less-susceptible planktonic and biofilm bacteria and MICs were determined. Antibiotic concentrations were quantified by an ultrahigh-performance liquid chromatography photodiode array (UHPLC-PDA) assay. For both strains, all monotherapies failed, with substantial regrowth and resistance of planktonic (≥8 log10 CFU/ml) and biofilm (>8 log10 CFU/cm2) bacteria at 120 h (MICciprofloxacin, up to 8 mg/liter; MICmeropenem, up to 64 mg/liter). Both combination treatments demonstrated synergistic bacterial killing of planktonic and biofilm bacteria of both strains from ∼48 h onwards and suppressed regrowth to ≤4 log10 CFU/ml and ≤6 log10 CFU/cm2 at 120 h. Overall, both combination treatments suppressed the amplification of resistance of planktonic bacteria for both strains and of biofilm bacteria for CW44. The combination with meropenem at 60% ELF penetration also suppressed the amplification of resistance of biofilm bacteria for PAOΔmutS. Thus, combination treatment demonstrated synergistic bacterial killing and resistance suppression against difficult-to-treat hypermutable P. aeruginosa strains.


2018 ◽  
Vol 62 (7) ◽  
Author(s):  
Safa S. Almarzoky Abuhussain ◽  
Joseph L. Kuti ◽  
David P. Nicolau

ABSTRACT The role of inhalational combination therapy when treating carbapenem-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae with newer beta-lactam/beta-lactamase inhibitors has not been established. Using a 72-h in vitro pharmacodynamic chemostat model, we simulated the human exposures achieved in epithelial lining fluid (ELF) following intravenous treatment with ceftazidime-avibactam (CZA) 2.5 g every 8 h (q8h) alone and in combination with inhaled amikacin (AMK-I) 400 mg q12h, a reformulated aminoglycoside designed for inhalational administration, against three P. aeruginosa isolates (CZA [ceftazidime/avibactam] MICs, 4/4 to 8/4 μg/ml; AMK-I MICs, 8 to 64 μg/ml) and three K. pneumoniae isolates (CZA MICs, 1/4 to 8/4 μg/ml; AMK-I MICs, 32 to 64 μg/ml). Combination therapy resulted in a significant reduction in 72-h CFU compared with that of CZA monotherapy against two of three P. aeruginosa isolates (−4.14 log 10 CFU/ml, P = 0.027; −1.42 log 10 CFU/ml, P = 0.020; and −0.4 log 10 CFU/ml, P = 0.298) and two of three K. pneumoniae isolates (0.04 log 10 CFU/ml, P = 0.963; −4.34 log 10 CFU/ml, P < 0.001; and −2.34 log 10 CFU/ml, P = 0.021). When measured by the area under the bacterial growth curve (AUBC) over 72 h, significant reductions were observed in favor of the combination regimen against all six isolates tested. AMK-I combination therapy successfully suppressed CZA resistance development in one K. pneumoniae isolate harboring bla KPC-3 that was observed during CZA monotherapy. These studies suggest a beneficial role for combination therapy with intravenous CZA and inhaled AMK when treating pneumonia caused by carbapenem-resistant Gram-negative bacteria.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Aaron J. Heffernan ◽  
Fekade B. Sime ◽  
Derek S. Sarovich ◽  
Michael Neely ◽  
Yarmarly Guerra-Valero ◽  
...  

ABSTRACT Given that aminoglycosides, such as amikacin, may be used for multidrug-resistant Pseudomonas aeruginosa infections, optimization of therapy is paramount for improved treatment outcomes. This study aims to investigate the pharmacodynamics of different simulated intravenous amikacin doses on susceptible P. aeruginosa to inform ventilator-associated pneumonia (VAP) and sepsis treatment choices. A hollow-fiber infection model with two P. aeruginosa isolates (MICs of 2 and 8 mg/liter) with an initial inoculum of ∼108 CFU/ml was used to test different amikacin dosing regimens. Three regimens (15, 25, and 50 mg/kg) were tested to simulate a blood exposure, while a 30 mg/kg regimen simulated the epithelial lining fluid (ELF) for potential respiratory tract infection. Data were described using a semimechanistic pharmacokinetic/pharmacodynamic (PK/PD) model. Whole-genome sequencing was used to identify mutations associated with resistance emergence. While bacterial density was reduced by >6 logs within the first 12 h in simulated blood exposures following this initial bacterial kill, there was amplification of a resistant subpopulation with ribosomal mutations that were likely mediating amikacin resistance. No appreciable bacterial killing occurred with subsequent doses. There was less (<5 log) bacterial killing in the simulated ELF exposure for either isolate tested. Simulation studies suggested that a dose of 30 and 50 mg/kg may provide maximal bacterial killing for bloodstream and VAP infections, respectively. Our results suggest that amikacin efficacy may be improved with the use of high-dose therapy to rapidly eliminate susceptible bacteria. Subsequent doses may have reduced efficacy given the rapid amplification of less-susceptible bacterial subpopulations with amikacin monotherapy.


2016 ◽  
Vol 61 (1) ◽  
Author(s):  
Rajbharan Yadav ◽  
Jürgen B. Bulitta ◽  
Roger L. Nation ◽  
Cornelia B. Landersdorfer

ABSTRACT Optimizing antibiotic combinations is promising to combat multidrug-resistant Pseudomonas aeruginosa. This study aimed to systematically evaluate synergistic bacterial killing and prevention of resistance by carbapenem and aminoglycoside combinations and to rationally optimize combination dosage regimens via a mechanism-based mathematical model (MBM). We studied monotherapies and combinations of imipenem with tobramycin or amikacin against three difficult-to-treat double-resistant clinical P. aeruginosa isolates. Viable-count profiles of total and resistant populations were quantified in 48-h static-concentration time-kill studies (inoculum, 107.5 CFU/ml). We rationally optimized combination dosage regimens via MBM and Monte Carlo simulations against isolate FADDI-PA088 (MIC of imipenem [MICimipenem] of 16 mg/liter and MICtobramycin of 32 mg/liter, i.e., both 98th percentiles according to the EUCAST database). Against this isolate, imipenem (1.5× MIC) combined with 1 to 2 mg/liter tobramycin (MIC, 32 mg/liter) or amikacin (MIC, 4 mg/liter) yielded ≥2-log10 more killing than the most active monotherapy at 48 h and prevented resistance. For all three strains, synergistic killing without resistance was achieved by ≥0.88× MICimipenem in combination with a median of 0.75× MICtobramycin (range, 0.032× to 2.0× MICtobramycin) or 0.50× MICamikacin (range, 0.25× to 0.50× MICamikacin). The MBM indicated that aminoglycosides significantly enhanced the imipenem target site concentration up to 3-fold; achieving 50% of this synergistic effect required aminoglycoside concentrations of 1.34 mg/liter (if the aminoglycoside MIC was 4 mg/liter) and 4.88 mg/liter (for MICs of 8 to 32 mg/liter). An optimized combination regimen (continuous infusion of imipenem at 5 g/day plus a 0.5-h infusion with 7 mg/kg of body weight tobramycin) was predicted to achieve >2.0-log10 killing and prevent regrowth at 48 h in 90.3% of patients (median bacterial killing, >4.0 log10 CFU/ml) against double-resistant isolate FADDI-PA088 and therefore was highly promising.


2011 ◽  
Vol 55 (7) ◽  
pp. 3406-3412 ◽  
Author(s):  
G. L. Drusano ◽  
T. P. Lodise ◽  
D. Melnick ◽  
W. Liu ◽  
A. Oliver ◽  
...  

ABSTRACTPseudomonas aeruginosapneumonia remains a most-difficult-to-treat nosocomial bacterial infection. We used mathematical modeling to identify drug exposure targets for meropenem in the epithelial lining fluid (ELF) of mice withPseudomonaspneumonia driving substantial [2 to 3 log10(CFU/g)] killing and which suppressed resistant subpopulation amplification. We bridged to humans to estimate the frequency with which the largest licensed meropenem dose would achieve these exposure targets. Cell kills of 2 and 3 log10(CFU/g) and resistant subpopulation suppression were mediated by achieving time > MIC in ELF of 32%, 50%, and 50%. Substantial variability in meropenem's ability to penetrate into ELF of both mice and humans was observed. Penetration variability and high exposure targets combined to prevent even the largest licensed meropenem dose from achieving the targets at an acceptable frequency. Even a highly potent agent such as meropenem does not adequately suppress resistant subpopulation amplification as single-agent therapy administered at maximal dose and optimal schedule. Combination chemotherapy is likely required in humans if we are to minimize resistance emergence inPseudomonas aeruginosapneumonia. This combination needs evaluation both in the murine pneumonia model and in humans.


2019 ◽  
Vol 64 (1) ◽  
Author(s):  
Rajbharan Yadav ◽  
Phillip J. Bergen ◽  
Kate E. Rogers ◽  
Carl M. J. Kirkpatrick ◽  
Steven C. Wallis ◽  
...  

ABSTRACT Augmented renal clearance (ARC) is common in critically ill patients and is associated with subtherapeutic concentrations of renally eliminated antibiotics. We investigated the impact of ARC on bacterial killing and resistance amplification for meropenem and tobramycin regimens in monotherapy and combination. Two carbapenem-resistant Pseudomonas aeruginosa isolates were studied in static-concentration time-kill studies. One isolate was examined comprehensively in a 7-day hollow-fiber infection model (HFIM). Pharmacokinetic profiles representing substantial ARC (creatinine clearance of 250 ml/min) were generated in the HFIM for meropenem (1 g or 2 g administered every 8 h as 30-min infusion and 3 g/day or 6 g/day as continuous infusion [CI]) and tobramycin (7 mg/kg of body weight every 24 h as 30-min infusion) regimens. The time courses of total and less-susceptible bacterial populations and MICs were determined for the monotherapies and all four combination regimens. Mechanism-based mathematical modeling (MBM) was performed. In the HFIM, maximum bacterial killing with any meropenem monotherapy was ∼3 log10 CFU/ml at 7 h, followed by rapid regrowth with increases in resistant populations by 24 h (meropenem MIC of up to 128 mg/liter). Tobramycin monotherapy produced extensive initial killing (∼7 log10 at 4 h) with rapid regrowth by 24 h, including substantial increases in resistant populations (tobramycin MIC of 32 mg/liter). Combination regimens containing meropenem administered intermittently or as a 3-g/day CI suppressed regrowth for ∼1 to 3 days, with rapid regrowth of resistant bacteria. Only a 6-g/day CI of meropenem combined with tobramycin suppressed regrowth and resistance over 7 days. MBM described bacterial killing and regrowth for all regimens well. The mode of meropenem administration was critical for the combination to be maximally effective against carbapenem-resistant P. aeruginosa.


2014 ◽  
Vol 58 (12) ◽  
pp. 7520-7526 ◽  
Author(s):  
Shawn H. MacVane ◽  
Wonhee So ◽  
David P. Nicolau ◽  
Joseph L. Kuti

ABSTRACTStaphylococcus aureus, including methicillin-susceptible (MSSA) and -resistant (MRSA) strains, is an important pathogen of bacterial pneumonia. As antibiotic concentrations at the site of infection are responsible for killing, we investigated the activity of human-simulated epithelial lining fluid (ELF) exposures of three antibiotics (ceftaroline, ceftriaxone, and vancomycin) commonly used for treatment ofS. aureuspneumonia. Anin vitropharmacodynamic model was used to simulate ELF exposures of vancomycin (1 g every 12 h [q12h]), ceftaroline (600 mg q12h and q8h), and ceftriaxone (2 g q24h and q12h). FourS. aureusisolates (2 MSSA and 2 MRSA) were evaluated over 72 h with a starting inoculum of ∼106CFU/ml. Time-kill curves were constructed, and microbiological response (change in log10CFU/ml from 0 h and the area under the bacterial killing and regrowth curve [AUBC]) was assessed in duplicate. The change in 72-h log10CFU/ml was largest for ceftaroline q8h (reductions of >3 log10CFU/ml against all strains). This regimen also achieved the lowest AUBC against all organisms (P< 0.05). Vancomycin produced reliable bacterial reductions of 0.9 to 3.3 log10CFU/ml, while the activity of ceftaroline q12h was more variable (reductions of 0.2 to 2.3 log10CFU/ml against 3 of 4 strains). Both regimens of ceftriaxone were poorly active against MSSA tested (0.1 reduction to a 1.8-log10CFU/ml increase). Against theseS. aureusisolates, ELF exposures of ceftaroline 600 mg q8h exhibited improved antibacterial activity compared with ceftaroline 600 mg q12h and vancomycin, and therefore, this q8h regimen deserves further evaluation for the treatment of bacterial pneumonia. These data also suggest that ceftriaxone should be avoided forS. aureuspneumonia.


2013 ◽  
Vol 57 (8) ◽  
pp. 3775-3782 ◽  
Author(s):  
Jianhui Xiong ◽  
David C. Alexander ◽  
Jennifer H. Ma ◽  
Maxime Déraspe ◽  
Donald E. Low ◽  
...  

ABSTRACTPseudomonas aeruginosa96 (PA96) was isolated during a multicenter surveillance study in Guangzhou, China, in 2000. Whole-genome sequencing of this outbreak strain facilitated analysis of its IncP-2 carbapenem-resistant plasmid, pOZ176. The plasmid had a length of 500,839 bp and an average percent G+C content of 57%. Of the 618 predicted open reading frames, 65% encode hypothetical proteins. The pOZ176 backbone is not closely related to any plasmids thus far sequenced, but some similarity to pQBR103 ofPseudomonas fluorescensSBW25 was observed. Two multiresistant class 1 integrons and several insertion sequences were identified. TheblaIMP-9-carrying integron containedaacA4→blaIMP-9→aacA4, flanked upstream by Tn21 tnpMRAand downstream by a completetnioperon of Tn402and amermodule, named Tn6016. The second integron carriedaacA4→catB8a→blaOXA-10and was flanked by Tn1403-liketnpRAand asul1-type 3′ conserved sequence (3′-CS), named Tn6217. Other features include three resistance genes similar to those of Tn5, a tellurite resistance operon, and twopiloperons. The replication and maintenance systems exhibit similarity to a genomic island ofRalstonia solanacearumGM1000. Codon usage analysis suggests the recent acquisition ofblaIMP-9. The origins of the integrons on pOZ176 indicated separate horizontal gene transfer events driven by antibiotic selection. The novel mosaic structure of pOZ176 suggests that it is derived from environmental bacteria.


2004 ◽  
Vol 48 (4) ◽  
pp. 1215-1221 ◽  
Author(s):  
Naomi R. Florea ◽  
Pamela R. Tessier ◽  
Cuilian Zhang ◽  
Charles H. Nightingale ◽  
David P. Nicolau

ABSTRACT Recent clinical failures associated with levofloxacin treatment for Streptococcus pneumoniae infections and growing evidence of frequent mutations in the isolate population have led to increased concerns regarding fluoroquinolone resistance. Our objective was to characterize the efficacies of levofloxacin and moxifloxacin against various genotypes of S. pneumoniae after simulated bronchopulmonary exposures. An in vitro model was used to simulate a levofloxacin concentration of 500 mg and a moxifloxacin concentration of 400 mg, which were previously determined to be the concentrations in the epithelial lining fluid of older adults receiving once-daily dosing. The effects of the drugs were tested against six S. pneumoniae containing various mutations. Bacterial density and resistance were quantitatively assessed over 48 h. The S. pneumoniae isolate with no mutation displayed a 4-log reduction in CFU after treatment with both agents and did not develop resistance. Isolates containing the parC or parE mutation or both mutations regrew and developed resistance when they were exposed to levofloxacin, despite an unbound area under the concentration-time curve (AUC):MIC ratio of ∼100. When the isolate containing the parC and gyrA mutations was exposed to levofloxacin, there was a half-log reduction in the number of CFU compared to that for the control, but the isolate subsequently regrew. Likewise, levofloxacin did not kill the isolate containing the parC, gyrA, and parE mutations. Moxifloxacin sustained the killing of all bacterial isolates tested without the development of resistance. Levofloxacin did not sustain bacterial killing and did not prevent the emergence of further resistance in mutants with the parC or parE mutation or both mutations, even though an unbound AUC:MIC ratio for exposure well above the breakpoint of 30 to 40 established in the literature for S. pneumoniae was maintained. Moxifloxacin was effective against all isolates tested, despite the presence of isolates with two- and three-step mutations, for which the MICs were increased.


Sign in / Sign up

Export Citation Format

Share Document