scholarly journals Antibacterial Activity of Human Simulated Epithelial Lining Fluid Concentrations of Ceftazidime-Avibactam Alone or in Combination with Amikacin Inhale (BAY41-6551) against Carbapenem-Resistant Pseudomonas aeruginosa and Klebsiella pneumoniae

2018 ◽  
Vol 62 (7) ◽  
Author(s):  
Safa S. Almarzoky Abuhussain ◽  
Joseph L. Kuti ◽  
David P. Nicolau

ABSTRACT The role of inhalational combination therapy when treating carbapenem-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae with newer beta-lactam/beta-lactamase inhibitors has not been established. Using a 72-h in vitro pharmacodynamic chemostat model, we simulated the human exposures achieved in epithelial lining fluid (ELF) following intravenous treatment with ceftazidime-avibactam (CZA) 2.5 g every 8 h (q8h) alone and in combination with inhaled amikacin (AMK-I) 400 mg q12h, a reformulated aminoglycoside designed for inhalational administration, against three P. aeruginosa isolates (CZA [ceftazidime/avibactam] MICs, 4/4 to 8/4 μg/ml; AMK-I MICs, 8 to 64 μg/ml) and three K. pneumoniae isolates (CZA MICs, 1/4 to 8/4 μg/ml; AMK-I MICs, 32 to 64 μg/ml). Combination therapy resulted in a significant reduction in 72-h CFU compared with that of CZA monotherapy against two of three P. aeruginosa isolates (−4.14 log 10 CFU/ml, P = 0.027; −1.42 log 10 CFU/ml, P = 0.020; and −0.4 log 10 CFU/ml, P = 0.298) and two of three K. pneumoniae isolates (0.04 log 10 CFU/ml, P = 0.963; −4.34 log 10 CFU/ml, P < 0.001; and −2.34 log 10 CFU/ml, P = 0.021). When measured by the area under the bacterial growth curve (AUBC) over 72 h, significant reductions were observed in favor of the combination regimen against all six isolates tested. AMK-I combination therapy successfully suppressed CZA resistance development in one K. pneumoniae isolate harboring bla KPC-3 that was observed during CZA monotherapy. These studies suggest a beneficial role for combination therapy with intravenous CZA and inhaled AMK when treating pneumonia caused by carbapenem-resistant Gram-negative bacteria.

2016 ◽  
Vol 60 (6) ◽  
pp. 3601-3607 ◽  
Author(s):  
A. Gomez-Simmonds ◽  
B. Nelson ◽  
D. P. Eiras ◽  
A. Loo ◽  
S. G. Jenkins ◽  
...  

Previous studies reported decreased mortality in patients with carbapenemase-producingKlebsiella pneumoniaebloodstream infections (BSIs) treated with combination therapy but included carbapenem-susceptible and -intermediate isolates, as per revised CLSI breakpoints. Here, we assessed outcomes in patients with BSIs caused by phenotypically carbapenem-resistantK. pneumoniae(CRKP) according to the number ofin vitroactive agents received and whether an extended-spectrum beta-lactam (BL) antibiotic, including meropenem, or an extended-spectrum cephalosporin was administered. We retrospectively reviewed CRKP BSIs at two New York City hospitals from 2006 to 2013, where all isolates had meropenem or imipenem MICs of ≥4 μg/ml. Univariate and multivariable models were created to identify factors associated with mortality. Of 141 CRKP BSI episodes, 23% were treated with a single active agent (SAA), 26% were treated with an SAA plus BL, 28% were treated with multiple active agents (MAA), and 23% were treated with MAA plus BL. Ninety percent of isolates had meropenem MICs of ≥16 μg/ml. Thirty-day mortality was 33% overall and did not significantly differ across the four treatment groups in a multivariable model (P= 0.4); mortality was significantly associated with a Pitt bacteremia score of ≥4 (odds ratio [OR], 7.7; 95% confidence interval [CI], 3.2 to 18.1;P= 0.1), and immunosuppression was protective (OR, 0.4; 95% CI, 0.2 to 1.0;P= 0.04). Individual treatment characteristics were also not significantly associated with outcome, including use of SAAs versus MAA (26% versus 38%,P= 0.1) or BL versus no BL (26% versus 39%,P= 0.1). In summary, in patients with CRKP BSIs caused by isolates with high carbapenem MICs, the role of combination therapy remains unclear, highlighting the need for prospective studies to identify optimal treatment regimens.


2019 ◽  
Vol 63 (11) ◽  
Author(s):  
Hajira Bilal ◽  
Phillip J. Bergen ◽  
Tae Hwan Kim ◽  
Seung Eun Chung ◽  
Anton Y. Peleg ◽  
...  

ABSTRACT Exacerbations of chronic Pseudomonas aeruginosa infections are a major treatment challenge in cystic fibrosis due to biofilm formation and hypermutation. We aimed to evaluate different dosage regimens of meropenem and tobramycin as monotherapies and in combination against hypermutable carbapenem-resistant P. aeruginosa. A hypermutable P. aeruginosa isolate (meropenem and tobramycin MICs, 8 mg/liter) was investigated in the dynamic CDC biofilm reactor over 120 h. Regimens were meropenem as the standard (2 g every 8 h, 30% epithelial lining fluid [ELF] penetration) and as a continuous infusion (CI; 6 g/day, 30% and 60% ELF penetration) and tobramycin at 10 mg/kg of body weight every 24 h (50% ELF penetration). The time courses of totally susceptible and less-susceptible bacteria and MICs were determined, and antibiotic concentrations were quantified by liquid chromatography-tandem mass spectrometry. All monotherapies failed, with the substantial regrowth of planktonic (>6 log10 CFU/ml) and biofilm (≥6 log10 CFU/cm2) bacteria occurring. Except for the meropenem CI (60% ELF penetration), all monotherapies amplified less-susceptible planktonic and biofilm bacteria by 120 h. The meropenem standard regimen with tobramycin caused initial killing followed by considerable regrowth with resistance (meropenem MIC, 64 mg/liter; tobramycin MIC, 32 mg/liter) for planktonic and biofilm bacteria. The combination containing the meropenem CI at both levels of ELF penetration synergistically suppressed the regrowth of total planktonic bacteria and the resistance of planktonic and biofilm bacteria. The combination with the meropenem CI at 60% ELF penetration, in addition, synergistically suppressed the regrowth of total biofilm bacteria. Standard regimens of meropenem and tobramycin were ineffective against planktonic and biofilm bacteria. The combination with meropenem CI exhibited enhanced bacterial killing and resistance suppression of carbapenem-resistant hypermutable P. aeruginosa.


2020 ◽  
Vol 64 (11) ◽  
Author(s):  
Mojgan Sabet ◽  
Ziad Tarazi ◽  
David C. Griffith

ABSTRACT Resistance to beta-lactams has created a major clinical issue. QPX7728 is a novel ultrabroad-spectrum cyclic boronic acid beta-lactamase inhibitor with activity against both serine and metallo-beta-lactamases developed to address this resistance for use in combination with beta-lactam antibiotics. The objective of these studies was to evaluate the activity of QPX7728 in combination with multiple beta-lactams against carbapenem-resistant Klebsiella pneumoniae isolates in a neutropenic mouse thigh infection model. Neutropenic mice were infected with strains with potentiated beta-lactam MICs of ≤2 mg/liter in the presence of 8 mg/liter QPX7728. Two strains of carbapenem-resistant K. pneumoniae were tested with aztreonam, biapenem, cefepime, ceftazidime, ceftolozane, and meropenem alone or in combination with 12.5, 25, or 50 mg/kg of body weight of QPX7728 every 2 hours for 24 hours. Treatment with all beta-lactams alone either was bacteriostatic or allowed for bacterial growth. The combination of QPX7728 plus each of these beta-lactams produced bacterial killing at all QPX7728 doses tested. Overall, these data suggest that QPX7728 administered in combination with different partner beta-lactam antibiotics may have utility in the treatment of bacterial infections due to carbapenem-resistant K. pneumoniae.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Po-Yu Liu ◽  
Yu-Lin Lee ◽  
Min-Chi Lu ◽  
Pei-Lan Shao ◽  
Po-Liang Lu ◽  
...  

ABSTRACT A multicenter collection of bacteremic isolates of Escherichia coli (n = 423), Klebsiella pneumoniae (n = 372), Pseudomonas aeruginosa (n = 300), and Acinetobacter baumannii complex (n = 199) was analyzed for susceptibility. Xpert Carba-R assay and sequencing for mcr genes were performed for carbapenem- or colistin-resistant isolates. Nineteen (67.8%) carbapenem-resistant K. pneumoniae (n = 28) and one (20%) carbapenem-resistant E. coli (n = 5) isolate harbored blaKPC (n = 17), blaOXA-48 (n = 2), and blaVIM (n = 1) genes.


2020 ◽  
Vol 58 (6) ◽  
Author(s):  
Christian M. Gill ◽  
Maxwell J. Lasko ◽  
Tomefa E. Asempa ◽  
David P. Nicolau

ABSTRACT The prevalence of carbapenem-resistant Pseudomonas aeruginosa is increasing. Identification of carbapenemase-producing P. aeruginosa will have therapeutic, epidemiological, and infection control implications. This study evaluated the performance of the EDTA-modified carbapenem inactivation method (eCIM) in tandem with the modified carbapenem inactivation method (mCIM) against a large collection of clinical P. aeruginosa isolates (n = 103) to provide clinicians a phenotypic test that not only identifies carbapenemase production but also distinguishes between metallo-β-lactamase and serine-carbapenemase production in P. aeruginosa. The mCIM test was performed according to Clinical and Laboratory Standards Institute guidelines, while the eCIM was conducted as previously described for Enterobacteriaceae. Test performance was compared to the genotypic profile as the reference. mCIM testing successfully categorized 91% (112/123) of P. aeruginosa isolates as carbapenemases or non-carbapenemase producers, with discordant isolates being primarily Guiana extended-spectrum (GES)-type producers. To increase the sensitivity of the mCIM for GES-harboring isolates, a double inoculum, prolonged incubation, or both was evaluated, with each modification improving sensitivity to 100% (12/12). Upon eCIM testing, all Verona integrin-encoded metallo-β-lactamases (VIM; n = 27) and New Delhi metallo-β-lactamases (NDM; n = 13) tested had 100% concordance to their genotypic profiles, whereas all Klebsiella pneumoniae carbapenemase (KPC; n = 8) and GES (n = 12) isolates tested negative, as expected, in the presence of EDTA. The eCIM failed to identify all imipenemase (IMP)-producing (n = 22) and Sao Paulo metallo-β-lactamase (SPM)-producing (n = 14) isolates. KPC-, VIM-, and NDM-producing P. aeruginosa were well defined by the conventional mCIM and eCIM testing methods; additional modifications appear required to differentiate GES-, IMP-, and SPM-producing isolates.


2011 ◽  
Vol 55 (7) ◽  
pp. 3406-3412 ◽  
Author(s):  
G. L. Drusano ◽  
T. P. Lodise ◽  
D. Melnick ◽  
W. Liu ◽  
A. Oliver ◽  
...  

ABSTRACTPseudomonas aeruginosapneumonia remains a most-difficult-to-treat nosocomial bacterial infection. We used mathematical modeling to identify drug exposure targets for meropenem in the epithelial lining fluid (ELF) of mice withPseudomonaspneumonia driving substantial [2 to 3 log10(CFU/g)] killing and which suppressed resistant subpopulation amplification. We bridged to humans to estimate the frequency with which the largest licensed meropenem dose would achieve these exposure targets. Cell kills of 2 and 3 log10(CFU/g) and resistant subpopulation suppression were mediated by achieving time > MIC in ELF of 32%, 50%, and 50%. Substantial variability in meropenem's ability to penetrate into ELF of both mice and humans was observed. Penetration variability and high exposure targets combined to prevent even the largest licensed meropenem dose from achieving the targets at an acceptable frequency. Even a highly potent agent such as meropenem does not adequately suppress resistant subpopulation amplification as single-agent therapy administered at maximal dose and optimal schedule. Combination chemotherapy is likely required in humans if we are to minimize resistance emergence inPseudomonas aeruginosapneumonia. This combination needs evaluation both in the murine pneumonia model and in humans.


2011 ◽  
Vol 55 (6) ◽  
pp. 2968-2970 ◽  
Author(s):  
Iraida E. Robledo ◽  
Edna E. Aquino ◽  
Guillermo J. Vázquez

ABSTRACTA 6-month, PCR-based, island-wide hospital surveillance study of beta-lactam resistance inEscherichia coli,Klebsiella pneumoniae,Pseudomonas aeruginosa, andAcinetobacter baumanniiwas conducted in Puerto Rico. Of 10,507 isolates, 1,239 (12%) unique, multi-beta-lactam-resistant isolates from all geographical regions were identified. The KPC gene was detected in 61E. coli, 333K. pneumoniae, 99P. aeruginosa, and 41A. baumanniiisolates, indicating the widespread dissemination of the KPC gene in clinically significant nosocomial isolates.


2019 ◽  
Vol 63 (8) ◽  
Author(s):  
Sandra Mikhail ◽  
Nivedita B. Singh ◽  
Razieh Kebriaei ◽  
Seth A. Rice ◽  
Kyle C. Stamper ◽  
...  

ABSTRACT Multidrug-resistant (MDR) Gram-negative organisms are a major health concern due to lack of effective therapy. Emergence of resistance to newer agents like ceftazidime-avibactam (CZA) further magnifies the problem. In this context, combination therapy of CZA with other antimicrobials may have potential in treating these pathogens. Unfortunately, there are limited data regarding these combinations. Therefore, the objective of this study was to evaluate CZA in combination with amikacin (AMK), aztreonam (AZT), colistin (COL), fosfomycin (FOS), and meropenem (MEM) against 21 carbapenem-resistant Klebsiella pneumoniae and 21 MDR Pseudomonas aeruginosa strains. The potential for synergy was evaluated via MIC combination evaluation and time-kill assays. All strains were further characterized by whole-genome sequencing, quantitative real-time PCR, and SDS-PAGE analysis to determine potential mechanisms of resistance. Compared to CZA alone, we observed a 4-fold decrease in CZA MICs for a majority of K. pneumoniae strains and at least a 2-fold decrease for most P. aeruginosa isolates in the majority of combinations tested. In both P. aeruginosa and K. pneumoniae strains, CZA in combination with AMK or AZT was synergistic (≥2.15-log10 CFU/ml decrease). CZA-MEM was effective against P. aeruginosa and CZA-FOS was effective against K. pneumoniae. Time-kill analysis also revealed that the synergy of CZA with MEM or AZT may be due to the previously reported restoration of MEM or AZT activity against these organisms. Our findings show that CZA in combination with these antibiotics has potential for therapeutic options in difficult to treat pathogens. Further evaluation of these combinations is warranted.


2012 ◽  
Vol 56 (4) ◽  
pp. 2108-2113 ◽  
Author(s):  
Zubair A. Qureshi ◽  
David L. Paterson ◽  
Brian A. Potoski ◽  
Mary C. Kilayko ◽  
Gabriel Sandovsky ◽  
...  

ABSTRACTKlebsiella pneumoniaeproducingKlebsiella pneumoniaecarbapenemase (KPC) has been associated with serious infections and high mortality. The optimal antimicrobial therapy for infection due to KPC-producingK. pneumoniaeis not well established. We conducted a retrospective cohort study to evaluate the clinical outcome of patients with bacteremia caused by KPC-producingK. pneumoniae. A total of 41 unique patients with blood cultures growing KPC-producingK. pneumoniaewere identified at two medical centers in the United States. Most of the infections were hospital acquired (32; 78%), while the rest of the cases were health care associated (9; 22%). The overall 28-day crude mortality rate was 39.0% (16/41). In the multivariate analysis, definitive therapy with a combination regimen was independently associated with survival (odds ratio, 0.07 [95% confidence interval, 0.009 to 0.71],P= 0.02). The 28-day mortality was 13.3% in the combination therapy group compared with 57.8% in the monotherapy group (P= 0.01). The most commonly used combinations were colistin-polymyxin B or tigecycline combined with a carbapenem. The mortality in this group was 12.5% (1/8). Despitein vitrosusceptibility, patients who received monotherapy with colistin-polymyxin B or tigecycline had a higher mortality of 66.7% (8/12). The use of combination therapy for definitive therapy appears to be associated with improved survival in bacteremia due to KPC-producingK. pneumoniae.


Author(s):  
Jaffar A Al-Tawfiq ◽  
Ali A Rabaan ◽  
Justin V Saunar ◽  
Ali M Bazzi

Abstract Background The molecular epidemiology of resistance of carbapenem-resistant Enterobacteriaceae (CRE) and Pseudomonas aeruginosa are important in the study of multidrug-resistant bacteria. We evaluate the prevalence of the different mechanisms of CRE in a hospital in Saudi Arabia. Methods Carbapenem non-susceptible isolates of Enterobacteriaceae and Pseudomonas aeruginosa were tested by real-time PCR for the detection of genes responsible for beta-lactam resistance. Results There were a total of 200 isolates with carbapenem non-susceptibility and these were Klebsiella pneumoniae (n=96, 48%), Escherichia coli (n=51, 25.5%) and Pseudomonas aeruginosa (n=45, 22.5%). The detected carbapenemases were oxacillinase-48 (OXA-48) (n=83, 41.5%), New Delhi metallo-β-lactamase (NDM) (n=19, 2.5%) and both NDM and OXA-48 (n=5, 2.5%). The other carbapenemases were imipenemase (n=1, 0.5%), Verona integrin encoded metallo-β-lactamase (n=6, 3%) and Klebsiella pneumoniae carbapenemase (n=1, 0.5%), but none were detected in 86 isolates (43%). Conclusion The most common carbapenemases were OXA-48 and a significant percentage had no detectable genes. These data will help in the selection of new antimicrobial therapies.


Sign in / Sign up

Export Citation Format

Share Document