scholarly journals Relationship between Susceptibility to Daptomycin In Vitro and Activity In Vivo in a Rabbit Model of Aortic Valve Endocarditis

2009 ◽  
Vol 53 (4) ◽  
pp. 1463-1467 ◽  
Author(s):  
H. F. Chambers ◽  
L. Basuino ◽  
B. A. Diep ◽  
J. Steenbergen ◽  
S. Zhang ◽  
...  

ABSTRACT Daptomycin is approved for treatment of Staphylococcus aureus bacteremia and right-sided endocarditis. Increases in daptomycin MICs have been associated with failure. A rabbit model of aortic valve endocarditis was used to determine whether MIC correlates with activity in vivo and whether a higher daptomycin dose can improve efficacy. Two related clinical S. aureus strains, one with a daptomycin MIC of 0.5 μg/ml and the other with a MIC of 2 μg/ml, were used to establish aortic valve endocarditis in rabbits. Daptomycin was administered once a day for 4 days at 12 mg/kg of body weight or 18 mg/kg to simulate doses in humans of 6 mg/kg and 10 mg/kg, respectively. Endocardial vegetations, spleens, and kidneys were harvested and quantitatively cultured. The strain with a MIC of 2 μg/ml had a survival advantage over the strain with a MIC of 0.5 μg/ml with >100 times more organisms of the former in endocardial vegetations at the 12-mg/kg dose in a dual-infection model. Both the 12-mg/kg dose and the 18-mg/kg dose completely eradicated the strain with a MIC of 0.5 from vegetations, spleens, and kidneys. The 12-mg/kg dose was ineffective against the strain with a MIC of 2 in vegetations; the 18-mg/kg dose produced a reduction of 3 log10 units in CFU in vegetations compared to the controls, although in no rabbit were organisms completely eliminated. Increasing the dose of daptomycin may improve its efficacy for infections caused by strains with reduced daptomycin susceptibility.

2001 ◽  
Vol 45 (5) ◽  
pp. 1431-1437 ◽  
Author(s):  
Michael W. Climo ◽  
Kerstin Ehlert ◽  
Gordon L. Archer

ABSTRACT The potential for the development of resistance in oxacillin-resistant Staphylococcus aureus (ORSA) to lysostaphin, a glycylglycine endopeptidase produced byStaphylococcus simulans biovar staphylolyticus, was examined in vitro and in an in vivo model of infection. Following in vitro exposure of ORSA to subinhibitory concentrations of lysostaphin, lysostaphin-resistant mutants were idenitifed among all isolates examined. Resistance to lysostaphin was associated with a loss of resistance to β-lactams and a change in the muropeptide interpeptide cross bridge from pentaglycine to a single glycine. Mutations in femA, the gene required for incorporation of the second and third glycines into the cross bridge, were found following PCR amplification and nucleotide sequence analysis. Complementation of lysostaphin-resistant mutants with pBBB31, which encodes femA, restored the phenotype of oxacillin resistance and lysostaphin susceptibility. Addition of β-lactam antibiotics to lysostaphin in vitro prevented the development of lysostaphin-resistant mutants. In the rabbit model of experimental endocarditis, administration of a low dose of lysostaphin for 3 days led predictably to the appearance of lysostaphin-resistant ORSA mutants in vegetations. Coadministration of nafcillin with lysostaphin prevented the emergence of lysostaphin-resistant mutants and led to a mean reduction in aortic valve vegetation counts of 7.5 log10 CFU/g compared to those for untreated controls and eliminated the isolation of lysostaphin-resistant mutants from aortic valve vegetations. Treatment with nafcillin and lysostaphin given alone led to mean reductions of 1.35 and 1.65 log10 CFU/g respectively. In ORSA, resistance to lysostaphin was associated with mutations in femA, but resistance could be suppressed by the coadministration of β-lactam antibiotics.


2012 ◽  
Vol 56 (11) ◽  
pp. 5528-5533 ◽  
Author(s):  
Yan Q. Xiong ◽  
Wessam Abdel Hady ◽  
Arnold S. Bayer ◽  
Liang Chen ◽  
Barry N. Kreiswirth ◽  
...  

ABSTRACTA number of cases of both methicillin-susceptibleStaphylococcus aureus(MSSA) and methicillin-resistantS. aureus(MRSA) strains that have developed daptomycin resistance (DAP-R) have been reported. Telavancin (TLV) is a lipoglycopeptide agent with a dual mechanism of activity (cell wall synthesis inhibition plus depolarization of the bacterial cell membrane). Five recent daptomycin-susceptible (DAP-S)/DAP-R MRSA isogenic strain pairs were evaluated forin vitroTLV susceptibility. All five DAP-R strains (DAP MICs ranging from 2 to 4 μg/ml) were susceptible to TLV (MICs of ≤0.38 μg/ml).In vitrotime-kill analyses also revealed that several TLV concentrations (1-, 2-, and 4-fold MICs) caused rapid killing against the DAP-R strains. Moreover, for 3 of 5 DAP-R strains (REF2145, A215, and B2.0), supra-MICs of TLV were effective at preventing regrowth at 24 h of incubation. Further, the combination of TLV plus oxacillin (at 0.25× or 0.50× MIC for each agent) increased killing of DAP-R MRSA strains REF2145 and A215 at 24 h (∼2-log and 5-log reductions versus TLV and oxacillin alone, respectively). Finally, using a rabbit model of aortic valve endocarditis caused by DAP-R strain REF2145, TLV therapy produced a mean reduction of >4.5 log10CFU/g in vegetations, kidneys, and spleen compared to untreated or DAP-treated rabbits. Moreover, TLV-treated rabbits had a significantly higher percentage of sterile tissue cultures (87% in vegetations and 100% in kidney and spleen) than all other treatment groups (P< 0.0001). Together, these results demonstrate that TLV has potent bactericidal activityin vitroandin vivoagainst DAP-R MRSA isolates.


1999 ◽  
Vol 43 (11) ◽  
pp. 2742-2746 ◽  
Author(s):  
Henry F. Chambers ◽  
Qing Xiang ◽  
Liu ◽  
Lucian Liuxin Chow ◽  
Corinne Hackbarth

ABSTRACT Levofloxacin is among the more active fluoroquinolones against streptococci and staphylococci. It is effective against moderately severe infections caused by these organisms, but its efficacy in the treatment of bacteremia and serious infections such as endocarditis is not well defined. We compared the efficacy of levofloxacin to those of standard agents in the rabbit model of aortic-valve endocarditis caused by fluoroquinolone-susceptible strains including a penicillin-susceptible strain of Streptococcus sanguis, a penicillin-resistant strain of Streptococcus mitis, a methicillin-resistant strain of Staphylococcus aureus, and a methicillin-susceptible strain of S. aureus. Levofloxacin administered intramuscularly at dosages of 20 to 40 mg/kg of body weight twice daily (b.i.d.) was completely ineffective against the penicillin-susceptible strain, with mean vegetation titers after 3 days of therapy not statistically significantly different from those for controls. Levofloxacin was no more effective than penicillin against the penicillin-resistant strain. Levofloxacin administered for 4 days at a dosage of 20 mg/kg b.i.d. was at least as effective as vancomycin administered intravenously at a dosage of 25 mg/kg b.i.d. against the methicillin-resistant S. aureus strain and was as effective as nafcillin administered intramuscularly at 100 mg three times daily against the methicillin-susceptible strain. Emergence of resistance to levofloxacin in vitro was less likely to occur than resistance to ciprofloxacin, and resistance to levofloxacin was not observed in vivo. Levofloxacin-rifampin combinations were antagonistic in vitro and in vivo. Levofloxacin was highly effective as a single agent against experimental staphylococcal endocarditis but was surprisingly ineffective against streptococcal endocarditis, suggesting that it has a potential role as treatment for serious S. aureus but not viridans group streptococcal infections in humans.


2012 ◽  
Vol 57 (3) ◽  
pp. 1157-1162 ◽  
Author(s):  
P. Tattevin ◽  
A. Saleh-Mghir ◽  
B. Davido ◽  
I. Ghout ◽  
L. Massias ◽  
...  

ABSTRACTConcerns have recently emerged about the potency and the quality of generic vancomycin (VAN) products approved for use in humans, based on experiments in a neutropenic mouse thigh infection model. However, other animal models may be more appropriate to decipher the bactericidal activities of VAN genericsin vivoand to predict their efficacy in humans. We aimed to compare the bactericidal activities of six generic VAN products currently used in France (Mylan and Sandoz), Spain (Hospira), Switzerland (Teva), and the United States (Akorn-Strides and American Pharmaceutical Products [APP]) in a rabbit model of aortic valve endocarditis induced by 8 × 107CFU of methicillin-resistantStaphylococcus aureus(MRSA) strain COL (VAN MIC, 1.5 μg/ml).In vitro, there were no significant differences in the time-kill curve studies performed with the six generic VAN products. Ten rabbits in each group were treated with intravenous (i.v.) VAN, 60 mg/kg of body weight twice a day (b.i.d.) for 4 days. Mean peak serum VAN levels, measured 45 min after the last injection, ranged from 35.5 (APP) to 45.9 μg/ml (Teva). Mean trough serum VAN levels, measured 12 h after the last injection, ranged from 2.3 (Hospira) to 9.2 (APP) μg/ml. All generic VAN products were superior to controls (no treatment) in terms of residual organisms in vegetations (P< 0.02 for each comparison) and in the spleen (P< 0.005 for each comparison). Pairwise comparisons of generic VAN products found no significant differences. In conclusion, a stringent MRSA endocarditis model found no significant differences in the bactericidal activities of six generic VAN products currently used in Europe and America.


2014 ◽  
Vol 83 (3) ◽  
pp. 1019-1029 ◽  
Author(s):  
Julienne C. Kaiser ◽  
Sameha Omer ◽  
Jessica R. Sheldon ◽  
Ian Welch ◽  
David E. Heinrichs

The branched-chain amino acids (BCAAs; Ile, Leu, and Val) not only are important nutrients for the growth ofStaphylococcus aureusbut also are corepressors for CodY, which regulates virulence gene expression, implicating BCAAs as an important link between the metabolic state of the cell and virulence. BCAAs are either synthesized intracellularly or acquired from the environment.S. aureusencodes three putative BCAA transporters, designated BrnQ1, BrnQ2, and BrnQ3; their functions have not yet been formally tested. In this study, we mutated all threebrnQparalogs so as to characterize their substrate specificities and their roles in growthin vitroandin vivo. We demonstrated that in the community-associated, methicillin-resistantS. aureus(CA-MRSA) strain USA300, BrnQ1 is involved in uptake of all three BCAAs, BrnQ2 transports Ile, and BrnQ3 does not have a significant role in BCAA transport under the conditions tested. Of the three, only BrnQ1 is essential for USA300 to grow in a chemically defined medium that is limited for Leu or Val. Interestingly, we observed that abrnQ2mutant grew better than USA300 in media limited for Leu and Val, owing to the fact that this mutation leads to overexpression ofbrnQ1. In a murine infection model, thebrnQ1mutant was attenuated, but in contrast,brnQ2mutants had significantly increased virulence compared to that of USA300, a phenotype we suggest is at least partially linked to enhancedin vivoscavenging of Leu and Val through BrnQ1. These data uncover a hitherto-undiscovered connection between nutrient acquisition and virulence in CA-MRSA.


2001 ◽  
Vol 45 (2) ◽  
pp. 485-494 ◽  
Author(s):  
Arnold Louie ◽  
Pamela Kaw ◽  
Partha Banerjee ◽  
Weiguo Liu ◽  
George Chen ◽  
...  

ABSTRACT In vitro time-kill studies and a rabbit model of endocarditis and pyelonephritis were used to define the impact that the order of exposure of Candida albicans to fluconazole (FLC) and amphotericin B (AMB), as sequential and combination therapies, had on the susceptibility of C. albicans to AMB and on the outcome. The contribution of FLC-induced resistance to AMB for C. albicans also was assessed. In vitro, AMB monotherapy rapidly killed each of four C. albicans strains; FLC alone was fungistatic. Preincubation of these fungi with FLC for 18 h prior to exposure to AMB decreased their susceptibilities to AMB for 8 to >40 h. Induced resistance to AMB was transient, but the duration of resistance increased with the length of FLC preincubation. Yeast sequentially incubated with FLC followed by AMB plus FLC (FLC→AMB+FLC) showed fungistatic growth kinetics similar to that of fungi that were exposed to FLC alone. This antagonistic effect persisted for at least 24 h. Simultaneous exposure of C. albicans to AMB and FLC [AMB+FLC(simult)] demonstrated activity similar to that with AMB alone for AMB concentrations of ≥1 μg/ml; antagonism was seen using an AMB concentration of 0.5 μg/ml. The in vitro findings accurately predicted outcomes in our rabbit infection model. In vivo, AMB monotherapy and treatment with AMB for 24 h followed by AMB plus FLC (AMB→AMB+FLC) rapidly sterilized kidneys and cardiac vegetations. AMB+FLC(simult) and FLC→AMB treatments were slower in clearing fungi from infected tissues. FLC monotherapy and FLC→AMB+FLC were both fungistatic and were the least active regimens. No adverse interaction was observed between AMB and FLC for the AMB→FLC regimen. However, FLC→AMB treatment was slower than AMB alone in clearing fungi from tissues. Thus, our in vitro and in vivo studies both demonstrate that preexposure of C. albicans to FLC reduces fungal susceptibility to AMB. The length of FLC preexposure and whether AMB is subsequently used alone or in combination with FLC determine the duration of induced resistance to AMB.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1481
Author(s):  
John Jairo Aguilera-Correa ◽  
Sara Fernández-López ◽  
Iskra Dennisse Cuñas-Figueroa ◽  
Sandra Pérez-Rial ◽  
Hanna-Leena Alakomi ◽  
...  

Staphylococcus aureus is the most common cause of surgical site infections and its treatment is challenging due to the emergence of multi-drug resistant strains such as methicillin-resistant S. aureus (MRSA). Natural berry-derived compounds have shown antimicrobial potential, e.g., ellagitannins such as sanguiin H-6 and lambertianin C, the main phenolic compounds in Rubus seeds, have shown antimicrobial activity. The aim of this study was to evaluate the effect of sanguiin H-6 and lambertianin C fractionated from cloudberry seeds, on the MRSA growth, and as treatment of a MRSA biofilm development in different growth media in vitro and in vivo by using a murine wound infection model where sanguiin H-6 and lambertianin C were used to prevent the MRSA infection. Sanguiin H-6 and lambertianin C inhibited the in vitro biofilm development and growth of MRSA. Furthermore, sanguiin H-6 showed significant anti-MRSA effect in the in vivo wound model. Our study shows the possible use of sanguiin H-6 as a preventive measure in surgical sites to avoid postoperative infections, whilst lambertianin C showed no anti-MRSA activity.


1998 ◽  
Vol 42 (4) ◽  
pp. 981-983 ◽  
Author(s):  
Glenn W. Kaatz ◽  
Susan M. Seo ◽  
Jeffrey R. Aeschlimann ◽  
Heather H. Houlihan ◽  
Renee-Claude Mercier ◽  
...  

ABSTRACT The in vivo efficacy of LY333328, a new glycopeptide antibiotic, was compared with that of vancomycin by using the rabbit model of left-sided methicillin-resistant Staphylococcus aureusendocarditis. Animals received LY333328 or vancomycin (25 mg/kg of body weight every 24 or 8 h, respectively) for 4 days. These drugs were equally effective in clearing bacteremia and in reducing bacterial counts in vegetations and tissues. We conclude that in this model, LY333328 was microbiologically effective and may be a therapeutic alternative to vancomycin.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
W. Mouton ◽  
J. Josse ◽  
C. Jacqueline ◽  
L. Abad ◽  
S. Trouillet-Assant ◽  
...  

AbstractStaphylococcus aureus is the most frequent aetiology of bone and joint infections (BJI) and can cause relapsing and chronic infections. One of the main factors involved in the chronicization of staphylococcal BJIs is the internalization of S. aureus into osteoblasts, the bone-forming cells. Previous studies have shown that S. aureus triggers an impairment of osteoblasts function that could contribute to bone loss. However, these studies focused mainly on the extracellular effects of S. aureus. Our study aimed at understanding the intracellular effects of S. aureus on the early osteoblast differentiation process. In our in vitro model of osteoblast lineage infection, we first observed that internalized S. aureus 8325-4 (a reference lab strain) significantly impacted RUNX2 and COL1A1 expression compared to its non-internalized counterpart 8325-4∆fnbAB (with deletion of fnbA and fnbB). Then, in a murine model of osteomyelitis, we reported no significant effect for S. aureus 8325-4 and 8325-4∆fnbAB on bone parameters at 7 days post-infection whereas S. aureus 8325-4 significantly decreased trabecular bone thickness at 14 days post-infection compared to 8325-4∆fnbAB. When challenged with two clinical isogenic strains isolated from initial and relapse phase of the same BJI, significant impairments of bone parameters were observed for both initial and relapse strain, without differences between the two strains. Finally, in our in vitro osteoblast infection model, both clinical strains impacted alkaline phosphatase activity whereas the expression of bone differentiation genes was significantly decreased only after infection with the relapse strain. Globally, we highlighted that S. aureus internalization into osteoblasts is responsible for an impairment of the early differentiation in vitro and that S. aureus impaired bone parameters in vivo in a strain-dependent manner.


1946 ◽  
Vol 84 (3) ◽  
pp. 247-261 ◽  
Author(s):  
Leo G. Nutini ◽  
Sister Eva Maria Lynch

1. The ability of alcoholic-precipitated extracts of beef tissue—brain, spleen, heart, and kidney—to stimulate the growth of Staphylococcus aureus, in vitro, and to convert the yellow S form to a white R variant with altered biochemical characteristics conforming to those of an avirulent organism, has been confirmed. 2. The avirulence of the white R variant has been established by tests in vivo on mice. 3. Staphylococcus aureus infections induced subcutaneously, intraperitoneally, and intravenously in mice responded favorably to brain extract following subcutaneous or oral administration. The mortality was 2 per cent in 444 experimental animals and 81 per cent in 448 control animals. 4. The extracts appeared equally efficient when used therapeutically (mortality 2 per cent of 162 experimental animals and 90 per cent in the control series) or prophylactically (mortality 2 per cent of 282 experimental animals and 76 per cent in 286 control mice). Extracts of brain and spleen were more effective than those of either heart or kidney. 5. Studies concerning the mechanism of action of the tissue extracts indicate that they prevented the formation of toxin by Staphylococcus aureus, and had but little effect on toxin actions. 6. Toxicity tests revealed that the brain and spleen extracts were relatively non-toxic, dosages equivalent to 2 per cent of the body weight being well tolerated. Kidney and heart extracts were much more toxic, producing mortality in dosages as low as 0.3 per cent of the body weight.


Sign in / Sign up

Export Citation Format

Share Document