scholarly journals In Vitro Activity of the Novel Pleuromutilin Lefamulin (BC-3781) and Effect of Efflux Pump Inactivation on Multidrug-Resistant and Extensively Drug-Resistant Neisseria gonorrhoeae

2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Susanne Jacobsson ◽  
Susanne Paukner ◽  
Daniel Golparian ◽  
Jörgen S. Jensen ◽  
Magnus Unemo

ABSTRACT We evaluated the activity of the novel semisynthetic pleuromutilin lefamulin, inhibiting protein synthesis and growth, and the effect of efflux pump inactivation on clinical gonococcal isolates and reference strains (n = 251), including numerous multidrug-resistant and extensively drug-resistant isolates. Lefamulin showed potent activity against all gonococcal isolates, and no significant cross-resistance to other antimicrobials was identified. Further studies of lefamulin are warranted, including in vitro selection and mechanisms of resistance, pharmacokinetics/pharmacodynamics, optimal dosing, and performance in randomized controlled trials.

2014 ◽  
Vol 58 (9) ◽  
pp. 5585-5588 ◽  
Author(s):  
Susanne Jacobsson ◽  
Daniel Golparian ◽  
Richard A. Alm ◽  
Michael Huband ◽  
John Mueller ◽  
...  

ABSTRACTWe evaluated the activity of the novel spiropyrimidinetrione AZD0914 (DNA gyrase inhibitor) against clinical gonococcal isolates and international reference strains (n= 250), including strains with diverse multidrug resistance and extensive drug resistance. The AZD0914 MICs were substantially lower than those of most other currently or previously recommended antimicrobials. AZD0914 should be further evaluated, includingin vitroselection,in vivoemergence and mechanisms of resistance, pharmacokinetics/pharmacodynamics in humans, optimal dosing, and performance, in appropriate randomized and controlled clinical trials.


2015 ◽  
Vol 59 (12) ◽  
pp. 7915-7918 ◽  
Author(s):  
João Pires ◽  
Thissa N. Siriwardena ◽  
Michaela Stach ◽  
Regula Tinguely ◽  
Sara Kasraian ◽  
...  

ABSTRACTThein vitroactivity of the novel antimicrobial peptide dendrimer G3KL was evaluated against 32Acinetobacter baumannii(including 10 OXA-23, 7 OXA-24, and 11 OXA-58 carbapenemase producers) and 35Pseudomonas aeruginosa(including 18 VIM and 3 IMP carbapenemase producers) strains and compared to the activities of standard antibiotics. Overall, both species collections showed MIC50/90values of 8/8 μg/ml and minimum bactericidal concentrations at which 50% or 90% of strains tested are killed (MBC50/90) of 8/8 μg/ml. G3KL is a promising molecule with antibacterial activity against multidrug-resistant and extensively drug-resistantA. baumanniiandP. aeruginosaisolates.


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Zhaojing Zong ◽  
Wei Jing ◽  
Jin Shi ◽  
Shu'an Wen ◽  
Tingting Zhang ◽  
...  

ABSTRACT Oxazolidinones are efficacious in treating mycobacterial infections, including tuberculosis (TB) caused by drug-resistant Mycobacterium tuberculosis. In this study, we compared the in vitro activities and MIC distributions of delpazolid, a novel oxazolidinone, and linezolid against multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) in China. Additionally, genetic mutations in 23S rRNA, rplC, and rplD genes were analyzed to reveal potential mechanisms underlying the observed oxazolidinone resistance. A total of 240 M. tuberculosis isolates were included in this study, including 120 MDR-TB isolates and 120 XDR-TB isolates. Overall, linezolid and delpazolid MIC90 values for M. tuberculosis isolates were 0.25 mg/liter and 0.5 mg/liter, respectively. Based on visual inspection, we tentatively set epidemiological cutoff (ECOFF) values for MIC determinations for linezolid and delpazolid at 1.0 mg/liter and 2.0 mg/liter, respectively. Although no significant difference in resistance rates was observed between linezolid and delpazolid among XDR-TB isolates (P > 0.05), statistical analysis revealed a significantly greater proportion of linezolid-resistant isolates than delpazolid-resistant isolates within the MDR-TB group (P = 0.036). Seven (53.85%) of 13 linezolid-resistant isolates were found to harbor mutations within the three target genes. Additionally, 1 isolate exhibited an amino acid substitution (Arg126His) within the protein encoded by rplD that contributed to high-level resistance to linezolid (MIC of >16 mg/liter), compared to a delpazolid MIC of 0.25. In conclusion, in vitro susceptibility testing revealed that delpazolid antibacterial activity was comparable to that of linezolid. A novel mutation within rplD that endowed M. tuberculosis with linezolid, but not delpazolid, resistance was identified.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Helio S. Sader ◽  
Mariana Castanheira ◽  
Dee Shortridge ◽  
Rodrigo E. Mendes ◽  
Robert K. Flamm

ABSTRACT The in vitro activity of ceftazidime-avibactam and many comparator agents was determined against various resistant subsets of organisms selected among 36,380 Enterobacteriaceae and 7,868 Pseudomonas aeruginosa isolates. The isolates were consecutively collected from 94 U.S. hospitals, and all isolates were tested for susceptibility by reference broth microdilution methods in a central monitoring laboratory (JMI Laboratories). Enterobacteriaceae isolates resistant to carbapenems (CRE) and/or ceftazidime-avibactam (MIC ≥ 16 μg/ml) were evaluated for the presence of genes encoding extended-spectrum β-lactamases and carbapenemases. Ceftazidime-avibactam inhibited >99.9% of all Enterobacteriaceae at the susceptible breakpoint of ≤8 μg/ml and was active against multidrug-resistant (MDR; n = 2,953; MIC50/90, 0.25/1 μg/ml; 99.2% susceptible), extensively drug-resistant (XDR; n = 448; MIC50/90, 0.5/2 μg/ml; 97.8% susceptible), and CRE (n = 513; MIC50/90, 0.5/2 μg/ml; 97.5% susceptible) isolates. Only 82.2% of MDR Enterobacteriaceae (n = 2,953) and 64.2% of ceftriaxone-nonsusceptible Klebsiella pneumoniae (n = 1,063) isolates were meropenem susceptible. Among Enterobacter cloacae (22.2% ceftazidime nonsusceptible), 99.8% of the isolates, including 99.3% of the ceftazidime-nonsusceptible isolates, were ceftazidime-avibactam susceptible. Only 23 of 36,380 Enterobacteriaceae (0.06%) isolates were ceftazidime-avibactam nonsusceptible, including 9 metallo-β-lactamase producers and 2 KPC-producing strains with porin alteration; the remaining 12 strains showed negative results for all β-lactamases tested. Ceftazidime-avibactam showed potent activity against P. aeruginosa (MIC50/90, 2/4 μg/ml; 97.1% susceptible), including MDR (MIC50/90, 4/16 μg/ml; 86.5% susceptible) isolates, and inhibited 71.8% of isolates nonsusceptible to meropenem, piperacillin-tazobactam, and ceftazidime (n = 628). In summary, ceftazidime-avibactam demonstrated potent activity against a large collection (n = 44,248) of contemporary Gram-negative bacilli isolated from U.S. patients, including organisms resistant to most currently available agents, such as CRE and meropenem-nonsusceptible P. aeruginosa.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Manoon Leechawengwongs ◽  
Therdsak Prammananan ◽  
Sarinya Jaitrong ◽  
Pamaree Billamas ◽  
Nampueng Makhao ◽  
...  

ABSTRACT New fluoroquinolones (FQs) have been shown to be more active against drug-resistant Mycobacterium tuberculosis strains than early FQs, such as ofloxacin. Sitafloxacin (STFX) is a new fluoroquinolone with in vitro activity against a broad range of bacteria, including M. tuberculosis. This study aimed to determine the in vitro activity of STFX against all groups of drug-resistant strains, including multidrug-resistant M. tuberculosis (MDR M. tuberculosis), MDR M. tuberculosis with quinolone resistance (pre-XDR), and extensively drug-resistant (XDR) strains. A total of 374 drug-resistant M. tuberculosis strains were tested for drug susceptibility by the conventional proportion method, and 95 strains were randomly submitted for MIC determination using the microplate alamarBlue assay (MABA). The results revealed that all the drug-resistant strains were susceptible to STFX at a critical concentration of 2 μg/ml. Determination of the MIC90s of the strains showed different MIC levels; MDR M. tuberculosis strains had a MIC90 of 0.0625 μg/ml, whereas pre-XDR and XDR M. tuberculosis strains had identical MIC90s of 0.5 μg/ml. Common mutations within the quinolone resistance-determining region (QRDR) of gyrA and/or gyrB did not confer resistance to STFX, except that double mutations of GyrA at Ala90Val and Asp94Ala were found in strains with a MIC of 1.0 μg/ml. The results indicated that STFX had potent in vitro activity against all the groups of drug-resistant M. tuberculosis strains and should be considered a new repurposed drug for treatment of multidrug-resistant and extensively drug-resistant TB.


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 876
Author(s):  
María Alejandrina Martínez-González ◽  
Luis Manuel Peña-Rodríguez ◽  
Andrés Humberto Uc-Cachón ◽  
Jorge Bórquez ◽  
Mario J. Simirgiotis ◽  
...  

Tuberculosis causes more than 1.2 million deaths each year. Worldwide, it is the first cause of death by a single infectious agent. The emergence of drug-resistant strains has limited pharmacological treatment of the disease and today, new drugs are urgently needed. Semi-synthetic mulinanes have previously shown important activity against multidrug-resistant (MDR) Mycobacterium tuberculosis. In this investigation, a new set of semi-synthetic mulinanes were synthetized, characterized, and evaluated for their in vitro activity against three drug-resistant clinical isolates of M. tuberculosis: MDR, pre-extensively Drug-Resistant (pre-XDR), and extensively Drug-Resistant (XDR), and against the drug-susceptible laboratory reference strain H37Rv. Derivative 1a showed the best anti-TB activity (minimum inhibitory concentration [MIC] = 5.4 µM) against the susceptible strain and was twice as potent (MIC = 2.7 µM) on the MDR, pre-XDR, and XDR strains and also possessed a bactericidal effect. Derivative 1a was also tested for its anti-TB activity in mice infected with the MDR strain. In this case, 1a produced a significant reduction of pulmonary bacilli loads, six times lower than the control, when tested at 0.2536 mg/Kg. In addition, 1a demonstrated an adjuvant effect by shortening second-line chemotherapy. Finally, the selectivity index of >15.64 shown by 1a when tested on Vero cells makes this derivative an important candidate for future studies in the development of novel antitubercular agents.


Author(s):  
Peechanika Chopjitt ◽  
Anusak Kerdsin ◽  
Dan Takeuchi ◽  
Rujirat Hatrongjit ◽  
Parichart Boueroy ◽  
...  

Background:: Acinetobacter baumannii is recognized as a majority opportunistic nosocomial pathogen and caus-ing hospital-acquired infection worldwide. The increasing prevalence of extensively drug-resistant Acinetobacter baumannii (XDRAB) has become a rising concern in healthcare facilities and has impeded public health due to limitation of therapeutic options and are associated with high morbidity and mortality as well as longer hospitalization. Whole-genome sequencing of highly multidrug resistant A. baumannii will increase understanding of resistant mechanisms, the emergence of novel re-sistance, genetic relationships among the isolates, source tracking, and treatment decisions in selected patients. Objective:: This study revealed the genomic analysis to explore blaOXA-23 harboring XDRAB isolates in Thailand. Methods:: Whole-genome sequencing of the two XDRAB isolates was carried out on a HiSeq2000 Illumina platform and susceptibility on antimicrobials was conducted. Results:: Both isolates revealed sequence types of international, clone II-carrying, multiple antimicrobial-resistant genes—ST195 and ST451. They were resistant to antimicrobial agents in all drug classes tested for Acinetobacter spp. They carried 18 antimicrobial-resistant genes comprising of 4 -lactamase genes (blaOXA-23, blaOXA-66, blaTEM-1D, blaADC-25), 4 aminogly-coside-resistant genes (armA, aph(3')-Ia, aph(3'')-Ib, aph(6)-Id), 3 macrolide-resistant genes (amvA, mphE, msrE), 1 sulfon-amide-resistant gene (sul-2), 2 tetracycline-resistant genes (tetB, tetR), 1 resistant-nodulation-cell division (RND) antibiotic efflux pump gene cluster, 2 major facilitator superfamily (MFS) antibiotic efflux pump genes (abaF, abaQ), and 1 small multidrug-resistant (SMR) antibiotic efflux pump gene (abeS). Mutation of gyrA (S81L) occurred in both isolates. Conclusions:: Whole-genome sequencing revealed both blaOXA-23 harboring XDRAB isolates were clustered under interna-tional clone II with difference STs and carrying multiple antimicrobial-resistant genes conferred their resistance to antimi-crobial agents. Inactivation of antimicrobials and target modification by enzymes, and pumping antibiotics by efflux pump are mainly resistance mechanism of the XDRAB in this study.


Sign in / Sign up

Export Citation Format

Share Document