scholarly journals Interlaboratory Variability of Caspofungin MICs for Candida spp. Using CLSI and EUCAST Methods: Should the Clinical Laboratory Be Testing This Agent?

2013 ◽  
Vol 57 (12) ◽  
pp. 5836-5842 ◽  
Author(s):  
A. Espinel-Ingroff ◽  
M. C. Arendrup ◽  
M. A. Pfaller ◽  
L. X. Bonfietti ◽  
B. Bustamante ◽  
...  

ABSTRACTAlthough Clinical and Laboratory Standards Institute (CLSI) clinical breakpoints (CBPs) are available for interpreting echinocandin MICs forCandidaspp., epidemiologic cutoff values (ECVs) based on collective MIC data from multiple laboratories have not been defined. While collating CLSI caspofungin MICs for 145 to 11,550Candidaisolates from 17 laboratories (Brazil, Canada, Europe, Mexico, Peru, and the United States), we observed an extraordinary amount of modal variability (wide ranges) among laboratories as well as truncated and bimodal MIC distributions. The species-specific modes across different laboratories ranged from 0.016 to 0.5 μg/ml forC. albicansandC. tropicalis, 0.031 to 0.5 μg/ml forC. glabrata, and 0.063 to 1 μg/ml forC. krusei. Variability was also similar among MIC distributions forC. dubliniensisandC. lusitaniae. The exceptions wereC. parapsilosisandC. guilliermondiiMIC distributions, where most modes were within one 2-fold dilution of each other. These findings were consistent with available data from the European Committee on Antimicrobial Susceptibility Testing (EUCAST) (403 to 2,556 MICs) forC. albicans,C. glabrata,C. krusei, andC. tropicalis. Although many factors (caspofungin powder source, stock solution solvent, powder storage time length and temperature, and MIC determination testing parameters) were examined as a potential cause of such unprecedented variability, a single specific cause was not identified. Therefore, it seems highly likely that the use of the CLSI species-specific caspofungin CBPs could lead to reporting an excessive number of wild-type (WT) isolates (e.g.,C. glabrataandC. krusei) as either non-WT or resistant isolates. Until this problem is resolved, routine testing or reporting of CLSI caspofungin MICs forCandidais not recommended; micafungin or anidulafungin data could be used instead.

2015 ◽  
Vol 59 (11) ◽  
pp. 6725-6732 ◽  
Author(s):  
A. Espinel-Ingroff ◽  
M. Alvarez-Fernandez ◽  
E. Cantón ◽  
P. L. Carver ◽  
S. C.-A. Chen ◽  
...  

ABSTRACTNeither breakpoints (BPs) nor epidemiological cutoff values (ECVs) have been established forCandidaspp. with anidulafungin, caspofungin, and micafungin when using the Sensititre YeastOne (SYO) broth dilution colorimetric method. In addition, reference caspofungin MICs have so far proven to be unreliable.Candidaspecies wild-type (WT) MIC distributions (for microorganisms in a species/drug combination with no detectable phenotypic resistance) were established for 6,007Candida albicans, 186C. dubliniensis, 3,188C. glabratacomplex, 119C. guilliermondii, 493C. krusei, 205C. lusitaniae, 3,136C. parapsilosiscomplex, and 1,016C. tropicalisisolates. SYO MIC data gathered from 38 laboratories in Australia, Canada, Europe, Mexico, New Zealand, South Africa, and the United States were pooled to statistically define SYO ECVs. ECVs for anidulafungin, caspofungin, and micafungin encompassing ≥97.5% of the statistically modeled population were, respectively, 0.12, 0.25, and 0.06 μg/ml forC. albicans, 0.12, 0.25, and 0.03 μg/ml forC. glabratacomplex, 4, 2, and 4 μg/ml forC. parapsilosiscomplex, 0.5, 0.25, and 0.06 μg/ml forC. tropicalis, 0.25, 1, and 0.25 μg/ml forC. krusei, 0.25, 1, and 0.12 μg/ml forC. lusitaniae, 4, 2, and 2 μg/ml forC. guilliermondii, and 0.25, 0.25, and 0.12 μg/ml forC. dubliniensis. Species-specific SYO ECVs for anidulafungin, caspofungin, and micafungin correctly classified 72 (88.9%), 74 (91.4%), 76 (93.8%), respectively, of 81Candidaisolates with identifiedfksmutations. SYO ECVs may aid in detecting non-WT isolates with reduced susceptibility to anidulafungin, micafungin, and especially caspofungin, since testing the susceptibilities ofCandidaspp. to caspofungin by reference methodologies is not recommended.


2011 ◽  
Vol 55 (9) ◽  
pp. 3985-3989 ◽  
Author(s):  
Maria Sjölund-Karlsson ◽  
Kevin Joyce ◽  
Karen Blickenstaff ◽  
Takiyah Ball ◽  
Jovita Haro ◽  
...  

ABSTRACTDue to emerging resistance to traditional antimicrobial agents, such as ampicillin, trimethoprim-sulfamethoxazole, and chloramphenicol, azithromycin is increasingly used for the treatment of invasiveSalmonellainfections. In the present study, 696 isolates of non-TyphiSalmonellacollected from humans, food animals, and retail meats in the United States were investigated for antimicrobial susceptibility to azithromycin. Seventy-twoSalmonella entericaserotype Typhi isolates from humans were also tested. For each isolate, MICs of azithromycin and 15 other antimicrobial agents were determined by broth microdilution. Among the non-TyphiSalmonellaisolates, azithromycin MICs among human isolates ranged from 1 to 32 μg/ml, whereas the MICs among the animal and retail meat isolates ranged from 2 to 16 μg/ml and 4 to 16 μg/ml, respectively. AmongSalmonellaserotype Typhi isolates, the azithromycin MICs ranged from 4 to 16 μg/ml. The highest MIC observed in the present study was 32 μg/ml, and it was detected in three human isolates belonging to serotypes Kentucky, Montevideo, and Paratyphi A. Based on our findings, we propose an epidemiological cutoff value (ECOFF) for wild-typeSalmonellaof ≤16 μg/ml of azithromycin. The susceptibility data provided could be used in combination with clinical outcome data to determine tentative clinical breakpoints for azithromycin andSalmonella enterica.


Author(s):  
A. Espinel-Ingroff ◽  
M. Sasso ◽  
J. Turnidge ◽  
M. Arendrup ◽  
F. Botterel ◽  
...  

Susceptibility testing is an important tool in the clinical setting; its utility is based on the availability of categorical endpoints, breakpoints (BPs) or epidemiological cutoff values (ECVs/ECOFFs). CLSI and EUCAST have developed antifungal susceptibility testing, BPs and ECVs for some fungal species. Although the Concentration Gradient Strip BioMerieux Etest is useful for routine testing in the clinical laboratory, ECVs are not available for all agent/species; the lack of clinical data precludes development of BPs. We re-evaluated and consolidated Etest data points from three previous studies, and included new data. We defined ECOFFinder Etest ECVs for three sets of species/agent combinations: fluconazole, posaconazole and voriconazole and 8 Candida spp.; amphotericin B and 3 non-prevalent Candida spp.; and caspofungin and 5 Aspergillus spp. The total of Etest MICs from 23 laboratories (Europe, the Americas, South Africa) included (antifungal agent/dependent): 17,242 Candida albicans , 244 C. dubliniensis , 5,129 C. glabrata species complex (SC), 275 C. guilliermondii ( Meyerozyma guilliermondii ), 1,133 C. krusei ( Pichia kudriavzevii ), 933 C. kefyr ( Kluyveromyces marxianus ), 519 C. lusitaniae ( Clavispora lusitaniae ), 2,947 C. parapsilosis SC, 2,214 C. tropicalis , 3,212 Aspergillus fumigatus , 232 A. flavus , 181 A. niger , and 267 A. terreus SC isolates. Triazole MICs for 66 confirmed non-wild-type (non-WT) Candida isolates were available ( ERG11 point mutations). Distributions fulfilling CLSI ECV criteria were pooled and ECOFFinder Etest ECVs were established for triazoles (9 Candida spp.); amphotericin B (3 less-prevalent Candida spp.) and caspofungin (4 Aspergillus spp.). Etest fluconazole ECVs could be good detectors of Candida non-WT isolates (59/61 Non-WT: 4 of 6 species).


2016 ◽  
Vol 61 (1) ◽  
Author(s):  
A. Espinel-Ingroff ◽  
M. Arendrup ◽  
E. Cantón ◽  
S. Cordoba ◽  
E. Dannaoui ◽  
...  

ABSTRACTMethod-dependent Etest epidemiological cutoff values (ECVs) are not available for susceptibility testing of eitherCandidaorAspergillusspecies with amphotericin B or echinocandins. In addition, reference caspofungin MICs forCandidaspp. are unreliable.CandidaandAspergillusspecies wild-type (WT) Etest MIC distributions (microorganisms in a species-drug combination with no detectable phenotypic resistance) were established for 4,341Candida albicans, 113C. dubliniensis, 1,683C. glabrataspecies complex (SC), 709C. krusei, 767C. parapsilosisSC, 796C. tropicalis, 1,637Aspergillus fumigatusSC, 238A. flavusSC, 321A. nigerSC, and 247A. terreusSC isolates. Etest MICs from 15 laboratories (in Argentina, Europe, Mexico, South Africa, and the United States) were pooled to establish Etest ECVs. Anidulafungin, caspofungin, micafungin, and amphotericin B ECVs (in micrograms per milliliter) encompassing ≥97.5% of the statistically modeled population were 0.016, 0.5, 0.03, and 1 forC. albicans; 0.03, 1, 0.03, and 2 forC. glabrataSC; 0.06, 1, 0.25, and 4 forC. krusei; 8, 4, 2, and 2 forC. parapsilosisSC; and 0.03, 1, 0.12, and 2 forC. tropicalis. The amphotericin B ECV was 0.25 μg/ml forC. dubliniensisand 2, 8, 2, and 16 μg/ml for the complexes ofA. fumigatus,A. flavus,A. niger, andA. terreus, respectively. While anidulafungin Etest ECVs classified 92% of theCandida fksmutants evaluated as non-WT, the performance was lower for caspofungin (75%) and micafungin (84%) cutoffs. Finally, although anidulafungin (as an echinocandin surrogate susceptibility marker) and amphotericin B ECVs should identifyCandidaandAspergillusisolates with reduced susceptibility to these agents using the Etest, these ECVs will not categorize a fungal isolate as susceptible or resistant, as breakpoints do.


1993 ◽  
Vol 6 (4) ◽  
pp. 367-381 ◽  
Author(s):  
J H Rex ◽  
M A Pfaller ◽  
M G Rinaldi ◽  
A Polak ◽  
J N Galgiani

Unlike antibacterial susceptibility testing, reliable antifungal susceptibility testing is still largely in its infancy. Many methods have been described, but they produce widely discrepant results unless such factors as pH, inoculum size, medium formulation, incubation time, and incubation temperature are carefully controlled. Even when laboratories agree upon a common method, interlaboratory agreement may be poor. As a result of numerous collaborative projects carried out both independently and under the aegis of the Subcommittee on Antifungal Susceptibility Testing of the National Committee for Clinical Laboratory Standards, the effects of varying these factors have been extensively studied and a standard method which minimizes interlaboratory variability during the testing of Candida spp. and Cryptococcus neoformans has been proposed. This review summarizes this work, reviews the strengths and weaknesses of the proposed susceptibility testing standard, and identifies directions for future work.


2015 ◽  
Vol 59 (3) ◽  
pp. 1745-1750 ◽  
Author(s):  
A. Espinel-Ingroff ◽  
A. Chakrabarti ◽  
A. Chowdhary ◽  
S. Cordoba ◽  
E. Dannaoui ◽  
...  

ABSTRACTClinical breakpoints (CBPs) have not been established for theMucoralesand any antifungal agent. In lieu of CBPs, epidemiologic cutoff values (ECVs) are proposed for amphotericin B, posaconazole, and itraconazole and fourMucoralesspecies. Wild-type (WT) MIC distributions (organisms in a species-drug combination with no detectable acquired resistance mechanisms) were defined with available pooled CLSI MICs from 14 laboratories (Argentina, Australia, Canada, Europe, India, Mexico, and the United States) as follows: 10Apophysomyces variabilis, 32Cunninghamella bertholletiae, 136Lichtheimia corymbifera, 10Mucor indicus, 123M. circinelloides, 19M. ramosissimus, 349Rhizopus arrhizus, 146R. microsporus, 33Rhizomucor pusillus, and 36Syncephalastrum racemosumisolates. CLSI broth microdilution MICs were aggregated for the analyses. ECVs comprising ≥95% and ≥97.5% of the modeled populations were as follows: amphotericin B ECVs forL. corymbiferawere 1 and 2 μg/ml, those forM. circinelloideswere 1 and 2 μg/ml, those forR. arrhizuswere 2 and 4 μg/ml, and those forR. microsporuswere 2 and 2 μg/ml, respectively; posaconazole ECVs forL. corymbiferawere 1 and 2, those forM. circinelloideswere 4 and 4, those forR. arrhizuswere 1 and 2, and those forR. microsporuswere 1 and 2, respectively; both itraconazole ECVs forR. arrhizuswere 2 μg/ml. ECVs may aid in detecting emerging resistance or isolates with reduced susceptibility (non-WT MICs) to the agents evaluated.


2014 ◽  
Vol 56 (6) ◽  
pp. 477-482 ◽  
Author(s):  
Edileusa Rosa dos Santos ◽  
Camila F. Dal Forno ◽  
Mari Glei Hernandez ◽  
Thaís Felli Kubiça ◽  
Tarcieli P. Venturini ◽  
...  

The high mortality rates associated with candidemia episodes and the emergence of resistance to antifungal agents necessitate the monitoring of the susceptibility of fungal isolates to antifungal treatments. The new, recently approved, species-specific clinical breakpoints (SS-CBPs)(M27-S4) for evaluating susceptibility require careful interpretation and comparison with the former proposals made using the M27-A3 breakpoints, both from CLSI. This study evaluated the susceptibility of the different species of Candida that were isolated from candidemias based on these two clinical breakpoints. Four hundred and twenty-two isolates were identified and, among them, C. parapsilosis comprised 46.68%, followed by C. albicans (35.78%), C. tropicalis (9.71%), C. glabrata (3.55%), C. lusitaniae (1.65%), C. guilliermondii (1.65%) and C. krusei (0.94%). In accordance with the M27-A3 criteria, 33 (7.81%) non-susceptible isolates were identified, of which 16 (3.79%) were resistant to antifungal agents. According to SS-CBPs, 80 (18.95%) isolates were non-susceptible, and 10 (2.36%) of these were drug resistant. When the total number of non-susceptible isolates was considered, the new SS-CBPs detected 2.4 times the number of isolates that were detected using the M27-A3 interpretative criteria. In conclusion, the detection of an elevated number of non-susceptible species has highlighted the relevance of evaluating susceptibility tests using new, species-specific clinical breakpoints (SS-CBPs), which could impact the profile of non-susceptible Candida spp. to antifungal agents that require continuous susceptibility monitoring.


2013 ◽  
Vol 58 (2) ◽  
pp. 916-922 ◽  
Author(s):  
M. A. Pfaller ◽  
A. Espinel-Ingroff ◽  
B. Bustamante ◽  
E. Canton ◽  
D. J. Diekema ◽  
...  

ABSTRACTSince epidemiological cutoff values (ECVs) using CLSI MICs from multiple laboratories are not available forCandidaspp. and the echinocandins, we established ECVs for anidulafungin and micafungin on the basis of wild-type (WT) MIC distributions (for organisms in a species-drug combination with no detectable acquired resistance mechanisms) for 8,210Candida albicans, 3,102C. glabrata, 3,976C. parapsilosis, 2,042C. tropicalis, 617C. krusei, 258C. lusitaniae, 234C. guilliermondii, and 131C. dubliniensisisolates. CLSI broth microdilution MIC data gathered from 15 different laboratories in Canada, Europe, Mexico, Peru, and the United States were aggregated to statistically define ECVs. ECVs encompassing 97.5% of the statistically modeled population for anidulafungin and micafungin were, respectively, 0.12 and 0.03 μg/ml forC. albicans, 0.12 and 0.03 μg/ml forC. glabrata, 8 and 4 μg/ml forC. parapsilosis, 0.12 and 0.06 μg/ml forC. tropicalis, 0.25 and 0.25 μg/ml forC. krusei, 1 and 0.5 μg/ml forC. lusitaniae, 8 and 2 μg/ml forC. guilliermondii, and 0.12 and 0.12 μg/ml forC. dubliniensis. Previously reported single and multicenter ECVs defined in the present study were quite similar or within 1 2-fold dilution of each other. For a collection of 230 WT isolates (nofksmutations) and 51 isolates withfksmutations, the species-specific ECVs for anidulafungin and micafungin correctly classified 47 (92.2%) and 51 (100%) of thefksmutants, respectively, as non-WT strains. These ECVs may aid in detecting non-WT isolates with reduced susceptibility to anidulafungin and micafungin due tofksmutations.


2015 ◽  
Vol 89 (7) ◽  
pp. 4002-4010 ◽  
Author(s):  
Efrem S. Lim ◽  
Sharon L. Deem ◽  
Ingrid J. Porton ◽  
Song Cao ◽  
David Wang

ABSTRACTThe roles of host genetics versus exposure and contact frequency in driving cross-species transmission remain the subject of debate. Here, we used a multitaxon lemur collection at the Saint Louis Zoo in the United States as a model to gain insight into viral transmission in a setting of high interspecies contact. Lemurs are a diverse and understudied group of primates that are highly endangered. The speciation of lemurs, which are endemic to the island of Madagascar, occurred in geographic isolation apart from that of continental African primates. Although evidence of endogenized viruses in lemur genomes exists, no exogenous viruses of lemurs have been described to date. Here we identified two novel picornaviruses in fecal specimens of ring-tailed lemurs (Lemur catta) and black-and-white ruffed lemurs (Varecia variegata). We found that the viruses were transmitted in a species-specific manner (lesavirus 1 was detected only in ring-tailed lemurs, while lesavirus 2 was detected only in black-and-white ruffed lemurs). Longitudinal sampling over a 1-year interval demonstrated ongoing infection in the collection. This was supported by evidence of viral clearance in some animals and new infections in previously uninfected animals, including a set of newly born triplets that acquired the infection. While the two virus strains were found to be cocirculating in a mixed-species exhibit of ring-tailed lemurs, black-and-white ruffed lemurs, and black lemurs, there was no evidence of cross-species transmission. This suggests that despite high-intensity contact, host species barriers can prevent cross-species transmissions of these viruses.IMPORTANCEUp to 75% of emerging infectious diseases in humans today are the result of zoonotic transmission. However, a challenge in understanding transmission dynamics has been the limited models of cross-species transmission. Zoos provide a unique opportunity to explore parameters defining viral transmission. We demonstrated that ongoing virus transmission in a mixed lemur species exhibit was species specific. This suggests that despite high contact intensity, host species barriers contribute to protection from cross-species transmission of these viruses. While the combinations of species might differ, most zoological parks worldwide commonly feature mixed-species exhibits. Collectively, this report demonstrates a widely applicable approach toward understanding infectious disease transmission.


Sign in / Sign up

Export Citation Format

Share Document