scholarly journals Development, Validation, and Routine Application of a High-Performance Liquid Chromatography Method Coupled with a Single Mass Detector for Quantification of Itraconazole, Voriconazole, and Posaconazole in Human Plasma

2010 ◽  
Vol 54 (8) ◽  
pp. 3408-3413 ◽  
Author(s):  
Lorena Baietto ◽  
Antonio D'Avolio ◽  
Giusi Ventimiglia ◽  
Francesco Giuseppe De Rosa ◽  
Marco Siccardi ◽  
...  

ABSTRACT We have developed and validated a high-performance liquid chromatography method coupled with a mass detector to quantify itraconazole, voriconazole, and posaconazole using quinoxaline as the internal standard. The method involves protein precipitation with acetonitrile. Mean accuracy (percent deviation from the true value) and precision (relative standard deviation percentage) were less than 15%. Mean recovery was more than 80% for all drugs quantified. The lower limit of quantification was 0.031 μg/ml for itraconazole and posaconazole and 0.039 μg/ml for voriconazole. The calibration range tested was from 0.031 to 8 μg/ml for itraconazole and posaconazole and from 0.039 to 10 μg/ml for voriconazole.

2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Paula Karina S. Uchoa ◽  
Leandro Bezerra de Lima ◽  
Antonia T. A. Pimenta ◽  
Maria da Conceição F. de Oliveira ◽  
Jair Mafezoli ◽  
...  

A high-performance liquid chromatography method was developed and validated for the quantification of the cytotoxic compounds produced by a marine strain ofAspergillus niger. The fungus was grown in malt peptone dextrose (MPD), potato dextrose yeast (PDY), and mannitol peptone yeast (MnPY) media during 7, 14, 21, and 28 days, and the natural products were identified by standard compounds. The validation parameters obtained were selectivity, linearity (coefficient of correlation > 0.99), precision (relative standard deviation below 5%), and accuracy (recovery > 96).


2012 ◽  
Vol 57 (1) ◽  
pp. 484-489 ◽  
Author(s):  
Mei Zhang ◽  
Grant A. Moore ◽  
Murray L. Barclay ◽  
Evan J. Begg

ABSTRACTA rapid and simple high-performance liquid chromatography (HPLC) assay was developed for the simultaneous determination of three triazole antifungals (voriconazole, posaconazole, and itraconazole and the metabolite of itraconazole, hydroxyitraconazole) in human plasma. Sample preparation involved a simple one-step protein precipitation with 1.0 M perchloric acid and methanol. After centrifugation, the supernatant was injected directly into the HPLC system. Voriconazole, posaconazole, itraconazole, its metabolite hydroxyitraconazole, and the internal standard naproxen were resolved on a C6-phenyl column using gradient elution of 0.01 M phosphate buffer, pH 3.5, and acetonitrile and detected with UV detection at 262 nm. Standard curves were linear over the concentration range of 0.05 to 10 mg/liter (r2> 0.99). Bias was <8.0% from 0.05 to 10 mg/liter, intra- and interday coefficients of variation (imprecision) were <10%, and the limit of quantification was 0.05 mg/liter.


2010 ◽  
Vol 7 (3) ◽  
pp. 962-966 ◽  
Author(s):  
Naveen Kumar ◽  
Nishant Verma ◽  
Omveer Songh ◽  
Naveen Joshi ◽  
Kanwar Gaurav Singh

A simple, precise, sensitive, fast and accurate high performance liquid chromatography method has been developed for the determination of atenolol using mixture of phosphate buffer and acetonitrile (53:47 v/v) as mobile phase. Buffer was prepared by mixing 0.02 M K2PO4and 0.003 M KH2PO4in equal proportion. Detection was carried out using UV detector at λmax230 nm. Column was ODS and dimensions of column was 25 mm × 4.6 mm. Atenolol was eluted out at retention time of 2.1 min. Method was validated at 1.2 mL/min flow rate. Calibration curve was linear between ranges of 40 to 200 mcg concentration. The limit of detection was calculates 120 nano gram and limit of quantitation is 510 nano gram. The relative standard deviation (RSD) of atenolol was 0.6. The percentage recovery of atenolol was 99.6%.


2020 ◽  
Vol 8 (2) ◽  
pp. 1-7
Author(s):  
Ihsan M. Shaheed ◽  
Saadiyah A. Dhahir

The quinolizindine alkaloid compound, oxymatrine pesticide, was analysis in the river water samples collected from different agriculture areas in the Iraqi city of Kerbala and also in its formulation using developed reverse-phase high-performance liquid chromatography method. Acetonitrile:methanol (60:40 v/v) was chosen as mobile phase at pH (7.0), flow rate 0.5 mL/min, and 20 µL as volume injection. Modified ecological-friendly method, dispersive liquid-liquid microextraction, was used for the extraction of oxymatrine from water samples. Linearity study was constructed from 0.1 to 70 μg/mL at λmax 205 nm. The limit of detection and limit of quantification were 0.025 and 0.082 μg/mL, respectively, and the relative standard deviation (RSD) % was 0.518%. Three spiked levels of concentration (20.0, 40.0, and 70.0 μg/mL) were used for the validation method. The percentage recovery for the three spiked samples was ranged between 98.743 and 99.432 and the RSD% was between 0.051 and 0.202%, the formulation studies of oxymatrine between 99.487 and 99.798, and the RSD% was ranged from 0.045 to 0.057%. The developed method can be used accurately and selectively for the determination of oxymatrine in environmental samples and in the formulation.


2020 ◽  
Vol 17 (34) ◽  
pp. 1046-1054
Author(s):  
Ihsan Mahdi SHAHEED ◽  
Saadiyah Ahmed DHAHIR

The triazole, tebuconazole pesticide, was determined in its formulation and also in the river water samples collected from different agriculture areas in the Iraqui city of Kerbala using developed high-performance liquid chromatography method(HPLC) with UV-visible detection, The mobile composition phase was a mixture of acetonitrile:methanol (50:50 v/v) and the column was C18 (250 cm x 4.6 mm,5μm). Also modified dispersive liquidliquid microextraction (DLLME), which is regarded as an ecological -friendly method, was used for the extraction of tebuconazole from water samples using acetonitrile and chloroform as solvents extraction and dispersive agent, respectively. Linearity to maintain the calibration curve was achieved from (0.1-70) μg.mL-1 with a limit of detection(0.053) μg.mL-1 and limit of quantification (0.174) μg.mL-1. Three spiked levels of concentration (1.0, 5.0, and 10) μg.mL-1 were used for the validation of the method. The relative standard deviation (RSD%) was (0.294- 0.813)%, and the percentage recovery was (100.001-100.005). The formulation studies for two different concentrations (10 and 40) μg.mL-1, which prepared from tebuconazole formulation (Raxil ODS2 2%), gave acceptable percentage recovery between (98.956-99.833). The developed method can be used accurately for the determination of tebuconazole in water samples and in the formulation of tebuconazole effectively.


2021 ◽  
Vol 15 (10) ◽  
pp. 2896-2899
Author(s):  
Waleed Arshad ◽  
Naseem Saud Ahmad ◽  
Abdul Muqeet Khan ◽  
Iram Imran ◽  
Qura- Tul-Ain ◽  
...  

Objective: To be able to accurately determine the quantity of Pyrazinamide (PZA) in different tablet preparations and human plasma using an Ultra violet detector equipped high performance liquid chromatography (HPLC). Study Design: Experimental study Place and Duration of Study: Department of Bioequivalence Studies, University of Veterinary and Animal Sciences Lahore and the Department of Pharmacology, University of Health Sciences, Lahore the from 1st April 2017 to 31st March 2018. Methodology: Two mobile phases were used, the first compromised of disodium hydrogen phosphate buffer having a pH of 6.8 and acetonitrile in the proportion of (95:5) and the second was a combination of aforesaid substances in equivalent proportion (50:50 v/v). The gradient for the first 5 min was exclusively Mobile phase “a” after which 5-6 min Mobile phase “b” was raised from 0 to 100% and was kept at 100% till the completion of the cycle. The flow of mobile phase was kept at 1000 µl/min. Determination of PZA was done using a ultraviolet detector at a wavelength of 238 nm. Amount of sample injected was 40 μl. Procedure was done by using Shizmadu Chromatographic System, Japan equipped with a SIL-20AC HT auto-sampler, SPD-M20A, CTO 20 AC, a LC-20AT VP pump, and CBM 20A controller unit. A C18 column was used as well. Results: Retention time of PZA was 6.1±2%. Precision was 0.46 to 2.20% relative standard deviation for intra assay and for inter assay we obtained 0.29 to 34.45% RSD for all quality control levels. The overall recovery of PZA was 96.75%. Conclusion: High selectivity for PZA was seen and no other spikes from drugs present in FDC regimen were observed at the time when PZA is detected in blank plasma samples Key words: Chromatography, High pressure liquid. Pyrazinamide. Tuberculosis


2007 ◽  
Vol 90 (1) ◽  
pp. 244-249 ◽  
Author(s):  
Jinhui Zhou ◽  
Xiaofeng Xue ◽  
Yi Li ◽  
Jinzhen Zhang ◽  
Jing Zhao

Abstract An optimized reversed-phase high-performance liquid chromatography method was developed to detect the trans-10-hydroxy-2-decenoic acid (10-HDA) content in royal jelly cream and lyophilized powder. The sample was extracted using absolute ethanol. Chromatographic separation of 10-HDA and methyl 4-hydroxybenzoate as the internal standard was performed on a Nova-pak C18 column. The average recoveries were 95.0-99.2% (n = 5) with relative standard deviation (RSD) values of 1.3-2.1% for royal jelly cream and 98.0-100.0% (n = 5) with RSD values of 1.6-3.0% for lyophilized powder, respectively. The limits of detection and quantitation were 0.5 and 1.5 mg/kg, respectively, for both royal jelly cream and lyophilized powder. The method was validated for the determination of practical royal jelly products. The concentration of 10-HDA ranged from 1.26 to 2.21% for pure royal jelly cream samples and 3.01 to 6.19% for royal jelly lyophilized powder samples. For 30 royal jelly products, the 10-HDA content varied from not detectable to 0.98%.


Separations ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 128
Author(s):  
Momochika Kumagai ◽  
Sanae Kato ◽  
Nanami Arakawa ◽  
Mika Otsuka ◽  
Takahisa Hamano ◽  
...  

The quantification of histidine-containing dipeptides (anserine, carnosine, and balenine) in serum might be a diagnostic tool to assess the health condition of animals. In this study, an existing reversed-phase ion-pair high-performance liquid chromatography (HPLC)–ultraviolet detection method was improved and validated to quantify serum anserine, carnosine, and balenine levels in the dolphin. The serum was deproteinized with trichloroacetic acid and directly injected into the HPLC system. Chromatographic separation of the three histidine-containing dipeptides was achieved on a TSK–gel ODS-80Ts (4.6 mm × 150 mm, 5 µm) analytical column using a mobile phase of 50 mmol/L potassium dihydrogen phosphate (pH 3.4) containing 6 mmol/L 1-heptanesulfonic acid and acetonitrile (96:4). The standard curve ranged from 0.1 µmol/L to 250 µmol/L. The average accuracy of the intra- and inter-analysis of anserine, carnosine, and balenine was 97–106%. The relative standard deviations of total precision (RSDr) of anserine, carnosine, and balenine in dolphin serum were 5.9%, 4.1%, and 2.6%, respectively. The lower limit of quantification of these compounds was 0.11–0.21 µmol/L. These results indicate that the improved method is reliable and concise for the simultaneous determination of anserine, carnosine, and balenine in dolphin serum, and may be useful for evaluation of health conditions in dolphins. Furthermore, this method can also be applied to other biological samples.


Author(s):  
BYRAN GOWRAMMA ◽  
SUBRAMANIYAN NAIYANAR MEYYANATHAN ◽  
BASAWAN BABU ◽  
NAGAPPAN KRISHNAVENI

Objective: In the present study, an isocratic chiral reverse-phase high-performance liquid chromatography method was developed and the resolution of the drug and complete separation from its degradation products were successfully achieved. Methods: An isocratic method developed with a Phenomenex Lux 5 μ Cellulose 1 (150 mm×4.6 mm i.d., 5 μ) using UV detector at wavelength of 220 nm, with a mobile phase consisting of methanol:0.1% diethylamine (60:40% v/v) and a flow rate of 1 ml/min. The drug was subjected to alkaline, acidic, neutral, oxidative, and photolytic to apply stress conditions. The stressed samples were analyzed by the proposed method. Results: The described method was linear over the range of 3–7 μg/ml for R-enantiomer and 9–21 μg/ml of S-enantiomer, respectively. The limit of detection and limit of quantification of R and S enantiomers were found to be 0.56 μg/ml and 0.18 μg/ml, respectively. Conclusion: The method provides good sensitivity and excellent precision and reproducibility. The developed method can be applied in the quality control of drug products.


Author(s):  
Poornima K. ◽  
Channabasavaraj Kp.

<p><strong>Objective: </strong>A new, rapid, selective, precise, accurate and economical, isocratic, reverse phase high-performance liquid chromatography method has been developed for simultaneous estimation of loperamide hydrochloride and tinidazole in bulk and in tablet formulations.</p><p><strong>Methods: </strong>The separation was achieved by using Lithosphere RP C-18, (250 x 4.6 mm, 5 µm) end capped column with a mobile phase containing sodium-1-octane sulfonate buffer: methanol: acetonitrile (40:30:30%v/v/v) pH adjusted to 4.0 (using dilute orthophosphoric acid). The flow rate was 1.0 ml/m and column effluent was monitored at 224 nm. The method was validated as per international conference on chemical harmonization (ICH) guidelines.</p><p><strong>Results</strong>:<strong> </strong>Tinidazole and loperamide hydrochloride were eluted at about 3.1 and 5.4 min respectively, indicating the shorter analysis time. The proposed method was found to be accurate, precise and reproducible. The linearity was established in the concentration range of 10-50 µg/ml. Limit of detection (LOD) and Limit of quantification (LOQ) was found to be 0.001 µg/ml and 0.003 µg/ml for loperamide hydrochloride and 0.01 µg/ml and 0.03 µg/ml for tinidazole.</p><p><strong>Conclusion: </strong>This method can be used for routine analysis of formulations containing any of the above drugs or combinations without any alteration in the chromatographic conditions.</p>


Sign in / Sign up

Export Citation Format

Share Document