scholarly journals Optimized Determination Method for trans-10-Hydroxy-2-Decenoic Acid Content in Royal Jelly by High-Performance Liquid Chromatography with an Internal Standard

2007 ◽  
Vol 90 (1) ◽  
pp. 244-249 ◽  
Author(s):  
Jinhui Zhou ◽  
Xiaofeng Xue ◽  
Yi Li ◽  
Jinzhen Zhang ◽  
Jing Zhao

Abstract An optimized reversed-phase high-performance liquid chromatography method was developed to detect the trans-10-hydroxy-2-decenoic acid (10-HDA) content in royal jelly cream and lyophilized powder. The sample was extracted using absolute ethanol. Chromatographic separation of 10-HDA and methyl 4-hydroxybenzoate as the internal standard was performed on a Nova-pak C18 column. The average recoveries were 95.0-99.2% (n = 5) with relative standard deviation (RSD) values of 1.3-2.1% for royal jelly cream and 98.0-100.0% (n = 5) with RSD values of 1.6-3.0% for lyophilized powder, respectively. The limits of detection and quantitation were 0.5 and 1.5 mg/kg, respectively, for both royal jelly cream and lyophilized powder. The method was validated for the determination of practical royal jelly products. The concentration of 10-HDA ranged from 1.26 to 2.21% for pure royal jelly cream samples and 3.01 to 6.19% for royal jelly lyophilized powder samples. For 30 royal jelly products, the 10-HDA content varied from not detectable to 0.98%.

2010 ◽  
Vol 54 (8) ◽  
pp. 3408-3413 ◽  
Author(s):  
Lorena Baietto ◽  
Antonio D'Avolio ◽  
Giusi Ventimiglia ◽  
Francesco Giuseppe De Rosa ◽  
Marco Siccardi ◽  
...  

ABSTRACT We have developed and validated a high-performance liquid chromatography method coupled with a mass detector to quantify itraconazole, voriconazole, and posaconazole using quinoxaline as the internal standard. The method involves protein precipitation with acetonitrile. Mean accuracy (percent deviation from the true value) and precision (relative standard deviation percentage) were less than 15%. Mean recovery was more than 80% for all drugs quantified. The lower limit of quantification was 0.031 μg/ml for itraconazole and posaconazole and 0.039 μg/ml for voriconazole. The calibration range tested was from 0.031 to 8 μg/ml for itraconazole and posaconazole and from 0.039 to 10 μg/ml for voriconazole.


2020 ◽  
Vol 25 (1) ◽  
pp. 95-111
Author(s):  
Juan D Rivera ◽  
Javier Torres ◽  
Yaned M Correa-Navarro

Gibberellic acid is a phytohormone that triggers the germination of seeds in a state of dormancy. Through the quantification of this hormone, the physiological condition of seeds of economic importance can be studded. In this work we validated a High-Performance Liquid Chromatography method to quantify gibberellic acid in germinated maize (Zea mays L.) seeds. Chromatographic conditions included the use of a C-18 reversed-phase column, acetonitrile-formic acid (1 : 9 %) as the mobile phase, flow of 0.5 mL·min-1, and detection at 195 nm. We evaluated our method for seven analytical parameters. The method was linear for gibberellic acid concentrations from1.0 mg·kg-1 to 50.0 mg·kg-1. The method’s limits were 0.3 mg·kg-1 and1.0 mg·kg-1 for detection and quantification, respectively. The method was highly precise; we obtained variable but low relative standard deviations (2.62 % - 12.66 %) for the studied gibberellic acid concentrations. We assessed accuracy through recovery percentages, ranging from 52.85 % - 63.68 %, for three gibberellic acid concentrations. We conclude that our analytical method can be used to measure gibberellic acid during the early stages of maize germination. In addition, the method could be used for the analysis of other types of plant matrices.


Separations ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 128
Author(s):  
Momochika Kumagai ◽  
Sanae Kato ◽  
Nanami Arakawa ◽  
Mika Otsuka ◽  
Takahisa Hamano ◽  
...  

The quantification of histidine-containing dipeptides (anserine, carnosine, and balenine) in serum might be a diagnostic tool to assess the health condition of animals. In this study, an existing reversed-phase ion-pair high-performance liquid chromatography (HPLC)–ultraviolet detection method was improved and validated to quantify serum anserine, carnosine, and balenine levels in the dolphin. The serum was deproteinized with trichloroacetic acid and directly injected into the HPLC system. Chromatographic separation of the three histidine-containing dipeptides was achieved on a TSK–gel ODS-80Ts (4.6 mm × 150 mm, 5 µm) analytical column using a mobile phase of 50 mmol/L potassium dihydrogen phosphate (pH 3.4) containing 6 mmol/L 1-heptanesulfonic acid and acetonitrile (96:4). The standard curve ranged from 0.1 µmol/L to 250 µmol/L. The average accuracy of the intra- and inter-analysis of anserine, carnosine, and balenine was 97–106%. The relative standard deviations of total precision (RSDr) of anserine, carnosine, and balenine in dolphin serum were 5.9%, 4.1%, and 2.6%, respectively. The lower limit of quantification of these compounds was 0.11–0.21 µmol/L. These results indicate that the improved method is reliable and concise for the simultaneous determination of anserine, carnosine, and balenine in dolphin serum, and may be useful for evaluation of health conditions in dolphins. Furthermore, this method can also be applied to other biological samples.


Author(s):  
PODILI BHAVANI ◽  
KAMMELA PRASADA RAO ◽  
SEELAM MOHAN

Objective: The main objective of this research is to develop and validate a simple, specific, precise, sensitive, cost-effective, and rapid reversed-phase high-performance liquid chromatography method for simultaneous quantification of glucosamine (GLU), diacerein (DIA) and methyl sulfonyl methane in bulk and pharmaceutical dosage forms, and micro-sample of rat plasma using ultraviolet (UV) detection, to perform the studies of drug dissolution from tablets. Methods: Sprague-Dawley rats were used for pharmacokinetic study after intravenous administration of the drug samples at dose 5 mg/kg. The drug samples were extracted by liquid-liquid extraction technique using acetonitrile, which also acted as a deproteinization agent. The separation of the analyte was carried out on a phenomena C18 column with a mobile phase composed of 0.1 % orthophosphoric acid:acetonitrile (80:20 v/v) delivered at a flow rate of 1.0 ml/min, and separation has been monitored by a UV detector, at detection of the wavelength of 285 nm. Results: This method was proven to be linear over a concentration range of 30–450 μg/ml for GLU, 2–30 μg/ml for DIA, and 10–150 μg/ml for methyl sulfonyl methane with a correlation coefficient of 0.999. The retention time of GLU, DIA, and methyl sulfonyl methane were 2.89, 6.32, and 9.87 min, respectively. Recovery of the drugs was found to be in the range of 98.0–102.0%. Validation results were found to be satisfactory and the method applicable for bulk and formulation analysis. Hence, it was evident that the proposed method was said to be a suitable one for the regular analysis and quality control of pharmaceutical preparations which contain these active drugs either individually or in combination. Conclusion: The validation results were in good agreement with acceptable limits. Relative standard deviation values which are less than 2.0% are indicating the accuracy and precision of this method. The usefulness of the method is that the common chromatographic conditions have been adopted for assay, dissolution, and pharmacokinetic studies. This developed method showed reliable, precise, and accurate results under optimized conditions.


Author(s):  
Raju Chandra ◽  
Manisha Pant ◽  
Harchan Singh ◽  
Deepak Kumar ◽  
Ashwani Sanghi

A reliable and reproducible reversed-phase high performance liquid chromatography (RP-HPLC) was developed for the quantitative determination of Remipril drug content from marketed bulk tablets. The active ingredient of Remipril separation achieved with C18 column using the methanol water mobile phase in the ratio of 40:60 (v/v). The active ingredient of the drug content quantify with UV detector at 215 nm. The retention time of Remipril is 5.63 min. A good linearity relation (R2=0.999) was obtained between drug concentration and average peak areas. The limit of detection and limit of quantification of the instrument were calculated 0.03 and 0.09 µg/mL, respectively. The accuracy of the method validation was determined 102.72% by recoveries method.


2020 ◽  
Vol 20 (13) ◽  
pp. 1053-1059
Author(s):  
Mahmoud M. Sebaiy ◽  
Noha I. Ziedan

Background: Allergic diseases are considered as the major burden on public health with increased prevalence globally. Histamine H1-receptor antagonists are the foremost commonly used drugs in the treatment of allergic disorders. The target drug in this study, loratadine, belongs to this class of drugs and its biometabolite desloratadine which is also a non-sedating H1 receptor antagonist with anti-histaminic activity being 2.5 to 4 times greater than loratadine. This study aimed to develop and validate a novel isocratic Reversed-phase High-Performance Liquid Chromatography (RP-HPLC) method for rapid and simultaneous separation and determination of loratadine and its metabolite, desloratadine in human plasma. Methods: The drug extraction method from plasma was based on protein precipitation technique. The separation was carried out on a Thermo Scientific BDS Hypersil C18 column (5μm, 250 x 4.60 mm) in a mobile phase of MeOH: 0.025M KH2PO4 adjusted to pH 3.50 using orthophosphoric acid (85: 15, v/v) at an ambient temperature. The flow rate was maintained at 1 mL/min and maximum absorption was measured using the PDA detector at 248 nm. Results: The retention times of loratadine and desloratadine in plasma samples were recorded to be 4.10 and 5.08 minutes, respectively, indicating a short analysis time. Limits of detection were found to be 1.80 and 1.97 ng/mL for loratadine and desloratadine, respectively, showing a high degree of sensitivity of the method. The method was then validated according to FDA guidelines for the determination of the two analytes in human plasma. Conclusion: The results obtained indicate that the proposed method is rapid, sensitive in the nanogram range, accurate, selective, robust and reproducible compared to other reported methods.


2006 ◽  
Vol 89 (6) ◽  
pp. 1552-1556
Author(s):  
ArmaĞan Önal ◽  
Olcay SaĞiri ◽  
S Müge Çetin ◽  
Sidika Toker

Abstract Reboxetine is used as a selective noradrenaline reuptake inhibitor for the treatment of major depressive disorders. It is effective in the treatment of severe depression and safer to use than traditional tricyclic antidepressants. In this study, a novel, simple, and rapid stability-indicating high-performance liquid chromatography (HPLC) method for reboxetine methansulfonate was successfully developed and validated for the assay of tablets. The method was used to quantify reboxetine in tablets; it employed a C18 column (150 4.6 mm id) with an isocratic mobile phase consisting of methanolphosphate buffer (pH 7, 0.02 M; 55 + 45, v/v) at a flow rate of 1.0 μmL/min. Reboxetine was detected by an ultraviolet detector at 277 nm. The retention time of reboxetine was about 4.5 min. The developed HPLC method was validated with respect to linearity, precision, sensitivity, accuracy, and selectivity. The method was linear over the concentration range 150 g/mL (r 0.9999). The limits of detection and the quantitation of reboxetine were 0.1 and 0.3 μg/mL, respectively. The relative standard deviation values for intraday and interday precision were 0.781.01 and 1.081.37%, respectively. Selectivity was validated by subjecting a stock solution of reboxetine to neutral, acid, and alkali hydrolysis, as well as oxidation, dry heat treatment, and photodegradation. The peaks of the degradation products did not interfere with the peak of reboxetine. The results indicated that the proposed method could be used in a stability assay. The proposed method was successfully applied to the determination of reboxetine in tablets. Excipients present in the tablets did not interfere with the analysis.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Paula Karina S. Uchoa ◽  
Leandro Bezerra de Lima ◽  
Antonia T. A. Pimenta ◽  
Maria da Conceição F. de Oliveira ◽  
Jair Mafezoli ◽  
...  

A high-performance liquid chromatography method was developed and validated for the quantification of the cytotoxic compounds produced by a marine strain ofAspergillus niger. The fungus was grown in malt peptone dextrose (MPD), potato dextrose yeast (PDY), and mannitol peptone yeast (MnPY) media during 7, 14, 21, and 28 days, and the natural products were identified by standard compounds. The validation parameters obtained were selectivity, linearity (coefficient of correlation > 0.99), precision (relative standard deviation below 5%), and accuracy (recovery > 96).


2014 ◽  
Vol 6 (16) ◽  
pp. 6560-6564 ◽  
Author(s):  
Wuxiang Zhang ◽  
Yicong Su ◽  
Jiangu Shi ◽  
Maosheng Zhang ◽  
Bide Wu ◽  
...  

In this paper, a high performance liquid chromatography technique is established for quantification of paraquat in blood.


Sign in / Sign up

Export Citation Format

Share Document