scholarly journals Pharmacokinetics of Telavancin in Adult Patients with Cystic Fibrosis during Acute Pulmonary Exacerbation

2019 ◽  
Vol 64 (1) ◽  
Author(s):  
James M. Kidd ◽  
Colleen M. Sakon ◽  
Louise-Marie Oleksiuk ◽  
Jeffrey J. Cies ◽  
Rebecca S. Pettit ◽  
...  

ABSTRACT Adults with cystic fibrosis (CF) frequently harbor Staphylococcus aureus, which is increasingly antibiotic resistant. Telavancin is a once-daily rapidly bactericidal antibiotic active against methicillin-, linezolid-, and ceftaroline-resistant S. aureus. Because CF patients experience alterations in pharmacokinetics, the optimal dose of telavancin in this population is unknown. Adult CF patients (n = 18) admitted for exacerbations received 3 doses of telavancin 7.5 mg/kg of body weight (first 6 patients) or 10 mg/kg (final 12 patients) every 24 h (q24h). Population pharmacokinetic models with and without covariates were fitted using the nonparametric adaptive grid algorithm in Pmetrics. The final model was used to perform 5,000-patient Monte Carlo simulations for multiple telavancin doses. The best fit was a 2-compartment model describing the volume of distribution of the central compartment (Vc) as a multiple of total body weight (TBW) and the volume of distribution of the central compartment scaled to total body weight (Vθ) normalized by the median observed value (Vc = Vθ × TBW/52.1) and total body clearance (CL) as a linear function of creatinine clearance (CRCL) (CL = CLNR + CLθ × CRCL), where CLNR represents nonrenal clearance and CLθ represents the slope term on CRCL to estimate renal clearance. The mean population parameters were as follows: Vθ, 4.92  ± 0.76 liters · kg−1; CLNR, 0.59  ± 0.30 liters · h−1; CLθ, 5.97 × 10−3 ± 1.24 × 10−3; Vp (volume of the peripheral compartment), 3.77  ± 1.41 liters; Q (intercompartmental clearance), 4.08  ± 2.17 liters · h−1. The free area under the concentration-time curve (fAUC) values for 7.5 and 10 mg/kg were 30  ± 4.6 and 52  ± 12 mg · h/liter, respectively. Doses of 7.5 mg/kg and 10 mg/kg achieved 76.5% and 100% probability of target attainment (PTA) at a fAUC/MIC threshold of >215, respectively, for MIC of ≤0.12 mg/liter. The probabilities of reaching the acute kidney injury (AKI) threshold AUC (763 mg · h · liter−1) for these doses were 0% and 0.96%, respectively. No serious adverse events occurred. Telavancin 10 mg/kg yielded optimal PTA and minimal risk of AKI, suggesting that this FDA-approved dose is appropriate to treat acute pulmonary exacerbations in CF adults. (The clinical trial discussed in this study has been registered at ClinicalTrials.gov under identifier NCT03172793.)

2012 ◽  
Vol 57 (3) ◽  
pp. 1144-1149 ◽  
Author(s):  
Amira A. Bhalodi ◽  
Pavlos K. Papasavas ◽  
Darren S. Tishler ◽  
David P. Nicolau ◽  
Joseph L. Kuti

ABSTRACTThe pharmacokinetics of linezolid was assessed in 20 adult volunteers with body mass indices (BMI) of 30 to 54.9 kg/m2receiving 5 intravenous doses of 600 mg every 12 h. Pharmacokinetic analyses were conducted using compartmental and noncompartmental methods. The mean (±standard deviation) age, height, and weight were 42.2 ± 12.2 years, 64.8 ± 3.5 in, and 109.5 ± 18.2 kg (range, 78.2 to 143.1 kg), respectively. Linezolid pharmacokinetics in this population were best described by a 2-compartment model with nonlinear clearance (original value, 7.6 ± 1.9 liters/h), which could be inhibited to 85.5% ± 12.2% of its original value depending on the concentration in an empirical inhibition compartment, the volume of the central compartment (24.4 ± 9.6 liters), and the intercompartment transfer constants (K12andK21) of 8.04 ± 6.22 and 7.99 ± 5.46 h−1, respectively. The areas under the curve for the 12-h dosing interval (AUCτ) were similar between moderately obese and morbidly obese groups: 130.3 ± 60.1 versus 109.2 ± 25.5 μg · h/ml (P= 0.32), and there was no significant relationship between the AUC or clearance and any body size descriptors. A significant positive relationship was observed for the total volume of distribution with total body weight (r2= 0.524), adjusted body weight (r2= 0.587), lean body weight (r2= 0.495), and ideal body weight (r2= 0.398), but not with BMI (r2= 0.171). Linezolid exposure in these obese participants was similar overall to that of nonobese patients, implying that dosage adjustments based on BMI alone are not required, and standard doses for patients with body weights up to approximately 150 kg should provide AUCτ values similar to those seen in nonobese participants.


2011 ◽  
Vol 55 (7) ◽  
pp. 3393-3398 ◽  
Author(s):  
Rebecca A. Keel ◽  
Andre Schaeftlein ◽  
Charlotte Kloft ◽  
J. Samuel Pope ◽  
R. Frederic Knauft ◽  
...  

ABSTRACTLinezolid is a treatment option for methicillin-resistantStaphylococcus aureus(MRSA) infections in cystic fibrosis (CF) patients. Little is known, however, about its pharmacokinetics in this population. Eight adults with CF were randomized to receive intravenous (i.v.) and oral linezolid at 600 mg twice daily for 9 doses in a crossover design with a 9-day washout. Plasma samples were collected after the first and ninth doses of each phase. Population pharmacokinetic analyses were performed by nonlinear mixed-effects modeling using a previously described 2-compartment model with time-dependent clearance inhibition. Monte Carlo simulation was performed to assess the activities of the linezolid dosing regimens against 42 contemporary MRSA isolates recovered from CF patients. The following pharmacokinetic parameter estimates were observed for the population: absorption rate constant, 1.91 h−1; clearance, 9.54 liters/h; volume of central compartment, 26.8 liters; volume of peripheral compartment, 17.3 liters; and intercompartmental clearance, 104 liters/h. Linezolid demonstrated nonlinear clearance after 9 doses, which was reduced by a mean of 38.9% (range, 28.8 to 59.9%). Mean bioavailability was 85% (range, 47 to 131%). At steady state, 600 mg given twice daily produced 93.0% and 87.2% probabilities of obtaining the target pharmacodynamic exposure against the MRSA isolates for the i.v. and oral formulations, respectively. Thrice-daily dosing increased the probabilities to 97.0% and 95.6%, respectively. Linezolid pharmacokinetics in these adults with CF were well described by a 2-compartment model with time-dependent clearance inhibition. Standard i.v. and oral dosing regimens should be sufficient to reliably attain pharmacodynamic targets against most MRSA isolates; however, more frequent dosing may be required for isolates with MICs of ≥2 μg/ml.


2016 ◽  
pp. AAC.01657-16 ◽  
Author(s):  
Danny Tsai ◽  
Penelope Stewart ◽  
Rajendra Goud ◽  
Stephen Gourley ◽  
Saliya Hewagama ◽  
...  

Objectives: There are no available pharmacokinetic data to guide piperacillin dosing in critically ill Australian Indigenous patients despite numerous reported physiological differences. This study aimed to describe the population pharmacokinetics of piperacillin in critically ill Australian Indigenous patients with severe sepsis.Methods: A population pharmacokinetic study of Indigenous patients with severe sepsis was conducted in a remote hospital intensive care unit. Plasma samples were collected over two dosing intervals and assayed by validated chromatography. Population pharmacokinetic modelling was conducted using Pmetrics®.Results: Nine patients were recruited and a two compartment model adequately described the data. Piperacillin clearance (CL), volume of distribution of the central compartment (Vc), distribution rate constant from central to peripheral compartment and from peripheral to central compartment were 5.6 ± 3.2 L/h, 14.5 ± 6.6 L, 1.5 ± 0.4 h-1and 1.8 ± 0.9 h-1respectively, where CL and Vcwere found to be described by creatinine clearance (CrCL) and total body weight respectively.Conclusion: In this patient population, piperacillin demonstrated high interindividual pharmacokinetic variability. CrCL were found to be the most important determinant of piperacillin pharmacokinetics.


2011 ◽  
Vol 55 (6) ◽  
pp. 2927-2936 ◽  
Author(s):  
J. B. Bulitta ◽  
M. Kinzig ◽  
C. B. Landersdorfer ◽  
U. Holzgrabe ◽  
U. Stephan ◽  
...  

ABSTRACTCystic fibrosis (CF) patients are often reported to have higher clearances and larger volumes of distribution per kilogram of total body weight (WT) for beta-lactams than healthy volunteers. As pharmacokinetic (PK) data on cefpirome from studies of CF patients are lacking, we systematically compared its population PK and pharmacodynamic breakpoints for CF patients and healthy volunteers of similar body size. Twelve adult CF patients (median lean body mass [LBM] = 45.7 kg) and 12 healthy volunteers (LBM = 50.0 kg) received a single 10-min intravenous infusion of 2 g cefpirome. Plasma and urine concentrations were determined by high-performance liquid chromatography (HPLC). Population PK and Monte Carlo simulations were performed using NONMEM and S-ADAPT and a duration of an unbound plasma concentration above the MIC ≥ 65% of the dosing interval as a pharmacodynamic target. Unscaled clearances for CF patients were similar to those seen with healthy volunteers, and the volume of distribution was 6% lower for CF patients. Linear scaling of total clearance by WT resulted in clearance that was 20% higher (P≤ 0.001 [nonparametric bootstrap]) in CF patients. Allometric scaling by LBM explained the differences between the two subject groups with respect to average clearance and volume of distribution and reduced the unexplained between-subject variability of renal and nonrenal clearance by 10 to 14%. For the CF patients, robust (>90%) probabilities of target attainment (PTA) were achieved by the administration of a standard dose of 2 g/70 kg WT every 12 h (Q12h) given as 30-min infusions for MICs ≤ 1.5 mg/liter. As alternative dosage regimens, a 5-h infusion of 1.33 g/70 kg WT Q8h achieved robust PTAs for MICs ≤ 8 to 12 mg/liter and a continuous infusion of 4 g/day for MICs ≤ 12 mg/liter. Prolonged infusion of cefpirome is expected to be superior to short-term infusions for MICs between 2 and 12 mg/liter.


Author(s):  
Antonin Praet ◽  
Laurent Bourguignon ◽  
Florence Vetele ◽  
Valentine Breant ◽  
Charlotte Genestet ◽  
...  

Initial dosing and dose adjustment of intravenous tobramycin in cystic fibrosis children is challenging. The objectives of this study were to develop nonparametric population pharmacokinetic (PK) models of tobramycin in children with CF to be used for dosage design and model-guided therapeutic drug monitoring. We performed a retrospective analysis of tobramycin PK data in our CF children center. The Pmetrics package was used for nonparametric population PK analysis and dosing simulations. Both the maximal concentration over the MIC (Cmax/MIC) and daily area under the concentration-time curve to the MIC (AUC 24 /MIC) ratios were considered as efficacy target. Trough concentration (Cmin) was considered as the safety target. A total of 2884 tobramycin concentrations collected in 195 patients over 9 years were analyzed. A two-compartment model including total body weight, body surface area and creatinine clearance as covariates best described the data. A simpler model was also derived for implementation into the BestDose software to perform Bayesian dose adjustment. Both models were externally validated. PK/PD simulations with the final model suggest that an initial dose of tobramycin of 15 to 17.5 mg/kg/day was necessary to achieve Cmax/MIC ≥ 10 values for MIC values up to 2 mg/L in most patients. The AUC 24 /MIC target was associated with larger dosage requirements and higher Cmin. A daily dose of 12.5 mg/kg would optimize both efficacy and safety target attainment. We recommend to perform tobramycin TDM, model-based dose adjustment, and MIC determination to individualize intravenous tobramycin therapy in children with CF.


Author(s):  
Ryan D Dunn ◽  
Ryan L Crass ◽  
Joseph Hong ◽  
Manjunath P Pai ◽  
Lynne C Krop

Abstract Purpose To compare methods of estimating vancomycin volume of distribution (V) in adults with class III obesity. Methods A retrospective, multicenter pharmacokinetic analysis of adults treated with vancomycin and monitored through measurement of peak and trough concentrations was performed. Individual pharmacokinetic parameter estimates were obtained via maximum a posteriori Bayesian analysis. The relationship between V and body weight was assessed using linear regression. Mean bias and root-mean-square error (RMSE) were calculated to assess the precision of multiple methods of estimating V. Results Of 241 patients included in the study sample, 159 (66.0%) had a BMI of 40.0–49.9 kg/m2, and 82 (34.0%) had a BMI of ≥50.0 kg/m2. The median (5th, 95th percentile) weight of patients was 136 (103, 204) kg, and baseline characteristics were similar between BMI groups. The mean ± S.D. V was lower in patients with a BMI of 40.0–49.9 kg/m2 than in those with a BMI of ≥50.0 kg/m2 (72.4 ± 19.6 L versus 79.3 ± 20.6 L, p = 0.009); however, body size poorly predicted V in regression analyses (R2 < 0.20). A fixed estimate of V (75 L) or use of 0.52 L/kg by total body weight yielded similar bias and error in this population. Conclusion Results of the largest analysis of vancomycin V in class III obesity to date indicated that use of a fixed V value (75 L) and use of a TBW-based estimate (0.52 L/kg) for estimation of vancomycin V in patients with a BMI of ≥40.0 kg/m2 have similar bias. Two postdistribution vancomycin concentrations are needed to accurately determine patient-specific pharmacokinetic parameters, estimate AUC, and improve the precision of vancomycin dosing in this patient population.


2015 ◽  
Vol 59 (7) ◽  
pp. 3956-3965 ◽  
Author(s):  
Julie Ann Justo ◽  
Stockton M. Mayer ◽  
Manjunath P. Pai ◽  
Melinda M. Soriano ◽  
Larry H. Danziger ◽  
...  

ABSTRACTThe pharmacokinetic profile of ceftaroline has not been well characterized in obese adults. The purpose of this study was to evaluate the pharmacokinetics of ceftaroline in 32 healthy adult volunteers aged 18 to 50 years in the normal, overweight, and obese body size ranges. Subjects were evenly assigned to 1 of 4 groups based on their body mass index (BMI) and total body weight (TBW) (ranges, 22.1 to 63.5 kg/m2and 50.1 to 179.5 kg, respectively). Subjects in the lower-TBW groups were matched by age, sex, race/ethnicity, and serum creatinine to the upper-BMI groups. Serial plasma and urine samples were collected over 12 h after the start of the infusion, and the concentrations of ceftaroline fosamil (prodrug), ceftaroline, and ceftaroline M-1 (inactive metabolite) were assayed. Noncompartmental and population pharmacokinetic analyses were used to evaluate the data. The mean plasma ceftaroline maximum concentration and area under the curve were ca. 30% lower in subjects with a BMI of ≥40 kg/m2compared to those <30 kg/m2. A five-compartment pharmacokinetic model with zero-order infusion and first-order elimination optimally described the plasma concentration-time profiles of the prodrug and ceftaroline. Estimated creatinine clearance (eCLCR) and TBW best explained ceftaroline clearance and volume of distribution, respectively. Although lower ceftaroline plasma concentrations were observed in obese subjects, Monte Carlo simulations suggest the probability of target attainment is ≥90% when the MIC is ≤1 μg/ml irrespective of TBW or eCLCR. No dosage adjustment for ceftaroline appears to be necessary based on TBW alone in adults with comparable eCLCR. Confirmation of these findings in infected obese patients is necessary to validate these findings in healthy volunteers. (This study has been registered at ClinicalTrials.gov under registration no. NCT01648127.)


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Izabel Almeida Alves ◽  
Keli Jaqueline Staudt ◽  
Carolina de Miranda Silva ◽  
Graziela de Araujo Lock ◽  
Teresa Dalla Costa ◽  
...  

ABSTRACT To make advances in the treatment of cryptococcal meningitis, it is crucial to know a given drug's free fraction that reaches the biophase. In the present study, we applied microdialysis (μD) as a tool to determine the free levels reached by voriconazole (VRC) in the brains of healthy and Cryptococcus neoformans-infected rats. The infection was induced by the intravenous (i.v.) administration of 1 × 105 CFU of yeast. The dose administered was 5 mg/kg (of body weight) of VRC, given i.v. Plasma and microdialysate samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and LC-UV methods. The free brain/free plasma ratio (fT) and population pharmacokinetic (popPK) analyses were performed to evaluate the impact of infection on PK parameters of the drug. The brain penetration ratio showed an increase on brain exposure in infected animals (fThealthy = 0.85 versus fTinfected = 1.86). The structural PK model with two compartments and Michaelis-Menten (MM) elimination describes the VRC concentration-time profile in plasma and tissue simultaneously. The covariate infection was included in volume of distribution in the peripheral compartment in healthy animals (V 2) and maximum rate of metabolism (VM ). The levels reached in infected tissues were higher than the values described for MIC of VRC for Cryptococccus neoformans (0.03 to 0.5 μg ml−1), indicating its great potential to treat meningitis associated with C. neoformans.


2018 ◽  
Vol 62 (7) ◽  
Author(s):  
Saeed A. Alqahtani ◽  
Abdullah S. Alsultan ◽  
Hussain M. Alqattan ◽  
Ahmed Eldemerdash ◽  
Turki B. Albacker

ABSTRACTThe purpose of this study was to investigate the population pharmacokinetics of vancomycin in patients undergoing open heart surgery. In this observational pharmacokinetic study, multiple blood samples were drawn over a 48-h period of intravenous vancomycin in patients who were undergoing open heart surgery. Blood samples were analyzed using an Architect i4000SR immunoassay analyzer. Population pharmacokinetic models were developed using Monolix 4.4 software. Pharmacokinetic-pharmacodynamic (PK-PD) simulations were performed to explore the ability of different dosage regimens to achieve the pharmacodynamic targets. A total of 168 blood samples were analyzed from 28 patients. The pharmacokinetics of vancomycin are best described by a two-compartment model with between-subject variability in clearance (CL), the volume of distribution of the central compartment (V1), and volume of distribution of the peripheral compartment (V2). The CL and theV1of vancomycin were related to creatinine CL (CLCR), body weight, and albumin concentration. Dosing simulations showed that standard dosing regimens of 1 and 1.5 g failed to achieve the PK-PD target of AUC0–24/MIC > 400 for an MIC of 1 mg/liter, while high weight-based dosing regimens were able to achieve the PK-PD target. In summary, the administration of standard doses of 1 and 1.5 g of vancomycin two times daily provided inadequate antibiotic prophylaxis in patients undergoing open heart surgery. The same findings were obtained when 15- and 20-mg/kg doses of vancomycin were administered. Achieving the PK-PD target required higher doses (25 and 30 mg/kg) of vancomycin.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
A. Kontou ◽  
K. Sarafidis ◽  
O. Begou ◽  
H. G. Gika ◽  
A. Tsiligiannis ◽  
...  

ABSTRACT Our objective was to develop a population pharmacokinetic (PK) model in order to evaluate the currently recommended dosing regimen in term and preterm neonates. By using an optimal design approach, a prospective PK study was designed and implemented in 60 neonates with postmenstrual ages (PMA) of 26 to 43 weeks. A loading dose of 16 mg/kg was administered at day 1, followed by a maintenance dose of 8 mg/kg daily. Plasma concentrations were quantified by high-pressure liquid chromatography–mass spectrometry. Population PK (popPK) analysis was performed using NONMEM software. Monte-Carlo (MC) simulations were performed to evaluate currently recommended dosing based on a pharmacodynamic index of area under the concentration-time curve (AUC)/MIC ratio of ≥400. A two-compartment model with linear elimination best described the data by the following equations: clearance (CL) = 0.0227 × (weight [wt]/1,765)0.75 × (estimated creatinine clearance [eCRCL]/22)0.672, central compartment volume of distribution (V1) = 0.283 (wt/1,765), intercompartmental clearance (Q) = 0.151 (wt/1,765)0.75, and peripheral compartment volume (V2) = 0.541 (wt/1,765). The interindividual variability estimates for CL, V1, and V2 were 36.5%, 45.7%, and 51.4%, respectively. Current weight (wt) and estimated creatinine clearance (eCRCL) significantly explained the observed variability. MC simulation demonstrated that, with the current dosing regimen, an AUC/MIC ratio of ≥400 was reached by only 68.5% of neonates with wt of <1 kg when the MIC was equal to 1 mg/kg, versus 82.2%, 89.7%, and 92.7% of neonates with wt of 1 to <2, 2 to <3, or ≥3 kg, respectively. Augmentation of a maintenance dose up to 10 or 11 mg/kg for preterm neonates with wt of 1 to <2 or <1 kg, respectively, increases the probability of reaching the therapeutic target; the recommended doses seem to be adequate for neonates with wt of ≥2 kg. Teicoplanin PK are variable in neonates, with wt and eCRCL having the most significant impact. Neonates with wt of <2 kg need higher doses, especially for Staphylococcus spp. with an MIC value of ≥1 mg/liter.


Sign in / Sign up

Export Citation Format

Share Document