scholarly journals Novel Pyrimidines as Antitubercular Agents

2018 ◽  
Vol 62 (3) ◽  
Author(s):  
Daigo Inoyama ◽  
Steven D. Paget ◽  
Riccardo Russo ◽  
Srinivasan Kandasamy ◽  
Pradeep Kumar ◽  
...  

ABSTRACTMycobacterium tuberculosisinfection is responsible for a global pandemic. New drugs are needed that do not show cross-resistance with the existing front-line therapeutics. A triazine antitubercular hit led to the design of a related pyrimidine family. The synthesis of a focused series of these analogs facilitated exploration of theirin vitroactivity,in vitrocytotoxicity, and physiochemical and absorption-distribution-metabolism-excretion properties. Select pyrimidines were then evaluated for their pharmacokinetic profiles in mice. The findings suggest a rationale for the further evolution of this promising series of antitubercular small molecules, which appear to share some similarities with the clinical compound PA-824 in terms of activation, while highlighting more general guidelines for the optimization of small-molecule antitubercular agents.

mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Caroline S. Foo ◽  
Andréanne Lupien ◽  
Maryline Kienle ◽  
Anthony Vocat ◽  
Andrej Benjak ◽  
...  

ABSTRACTNew drugs are needed to control the current tuberculosis (TB) pandemic caused by infection withMycobacterium tuberculosis. We report here on our work with AX-35, an arylvinylpiperazine amide, and four related analogs, which are potent antitubercular agentsin vitro. All five compounds showed good activity againstM. tuberculosisin vitroand in infected THP-1 macrophages, while displaying only mild cytotoxicity. Isolation and characterization ofM. tuberculosis-resistant mutants to the arylvinylpiperazine amide derivative AX-35 revealed mutations in theqcrBgene encoding a subunit of cytochromebc1oxidase, one of two terminal oxidases of the electron transport chain. Cross-resistance studies, allelic exchange, transcriptomic analyses, and bioenergetic flux assays provided conclusive evidence that the cytochromebc1-aa3is the target of AX-35, although the compound appears to interact differently with the quinol binding pocket compared to previous QcrB inhibitors. The transcriptomic and bioenergetic profiles ofM. tuberculosistreated with AX-35 were similar to those generated by other cytochromebc1oxidase inhibitors, including the compensatory role of the alternate terminal oxidase cytochromebdin respiratory adaptation. In the absence of cytochromebdoxidase, AX-35 was bactericidal againstM. tuberculosis. Finally, AX-35 and its analogs were active in an acute mouse model of TB infection, with two analogs displaying improved activity over the parent compound. Our findings will guide future lead optimization to produce a drug candidate for the treatment of TB and other mycobacterial diseases, including Buruli ulcer and leprosy.IMPORTANCENew drugs againstMycobacterium tuberculosisare urgently needed to deal with the current global TB pandemic. We report here on the discovery of a series of arylvinylpiperazine amides (AX-35 to AX-39) that represent a promising new family of compounds with potentin vitroandin vivoactivities againstM. tuberculosis. AX compounds target the QcrB subunit of the cytochromebc1terminal oxidase with a different mode of interaction compared to those of known QcrB inhibitors. This study provides the first multifaceted validation of QcrB inhibition by recombineering-mediated allelic exchange, gene expression profiling, and bioenergetic flux studies. It also provides further evidence for the compensatory role of cytochromebdoxidase upon QcrB inhibition. In the absence of cytochromebdoxidase, AX compounds are bactericidal, an encouraging property for future antimycobacterial drug development.


2014 ◽  
Vol 58 (7) ◽  
pp. 4222-4223 ◽  
Author(s):  
Jim Werngren ◽  
Maria Wijkander ◽  
Nasrin Perskvist ◽  
V. Balasubramanian ◽  
Vasan K. Sambandamurthy ◽  
...  

ABSTRACTThe MIC of the novel antituberculosis (anti-TB) drug AZD5847 was determined against 146 clinical isolates from diverse geographical regions, including eastern Europe, North America, Africa, and Asia, using the automated Bactec Mycobacterial Growth Indicator Tube (MGIT) 960 system. These isolates originated from specimen sources such as sputum, bronchial alveolar lavage fluid, pleural fluid, abscess material, lung biopsies, and feces. The overall MIC90was 1.0 mg/liter (range, 0.125 to 4 mg/liter). The MICs of AZD5847 for isolates ofMycobacterium tuberculosiswere similar among drug-sensitive strains, multidrug-resistant (MDR) strains, and extensively drug resistant (XDR) strains. The goodin vitroactivity of AZD5847 againstM. tuberculosisand the lack of cross-resistance make this agent a promising anti-TB drug candidate.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Matthew B. McNeil ◽  
Theresa O’Malley ◽  
Devon Dennison ◽  
Catherine D. Shelton ◽  
Bjorn Sunde ◽  
...  

ABSTRACT The Mycobacterium tuberculosis protein MmpL3 performs an essential role in cell wall synthesis, since it effects the transport of trehalose monomycolates across the inner membrane. Numerous structurally diverse pharmacophores have been identified as inhibitors of MmpL3 largely based on the identification of resistant isolates with mutations in MmpL3. For some compounds, it is possible there are different primary or secondary targets. Here, we have investigated resistance to the spiral amine class of compounds. Isolation and sequencing of resistant mutants demonstrated that all had mutations in MmpL3. We hypothesized that if additional targets of this pharmacophore existed, then successive rounds to generate resistant isolates might reveal mutations in other loci. Since compounds were still active against resistant isolates, albeit with reduced potency, we isolated resistant mutants in this background at higher concentrations. After a second round of isolation with the spiral amine, we found additional mutations in MmpL3. To increase our chance of finding alternative targets, we ran a third round of isolation using a different molecule scaffold (AU1235, an adamantyl urea). Surprisingly, we obtained further mutations in MmpL3. Multiple mutations in MmpL3 increased the level and spectrum of resistance to different pharmacophores but did not incur a fitness cost in vitro. These results support the hypothesis that MmpL3 is the primary mechanism of resistance and likely target for these pharmacophores. IMPORTANCE Mycobacterium tuberculosis is a major global human pathogen, and new drugs and new drug targets are urgently required. Cell wall biosynthesis is a major target of current tuberculosis drugs and of new agents under development. Several new classes of molecules appear to have the same target, MmpL3, which is involved in the export and synthesis of the mycobacterial cell wall. However, there is still debate over whether MmpL3 is the primary or only target for these classes. We wanted to confirm the mechanism of resistance for one series. We identified mutations in MmpL3 which led to resistance to the spiral amine series. High-level resistance to these compounds and two other series was conferred by multiple mutations in the same protein (MmpL3). These mutations did not reduce growth rate in culture. These results support the hypothesis that MmpL3 is the primary mechanism of resistance and likely target for these pharmacophores.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Claire Healy ◽  
Alexandre Gouzy ◽  
Sabine Ehrt

ABSTRACT Synthesis and cleavage of the cell wall polymer peptidoglycan (PG) are carefully orchestrated processes and are essential for the growth and survival of bacteria. Yet, the function and importance of many enzymes that act on PG in Mycobacterium tuberculosis remain to be elucidated. We demonstrate that the activity of the N-acetylmuramyl-l-alanine amidase Ami1 is dispensable for cell division in M. tuberculosis in vitro yet contributes to the bacterium’s ability to persist during chronic infection in mice. Furthermore, the d,l-endopeptidase RipA, a predicted essential enzyme, is dispensable for the viability of M. tuberculosis but required for efficient cell division in vitro and in vivo. Depletion of RipA sensitizes M. tuberculosis to rifampin and to cell envelope-targeting antibiotics. Ami1 helps sustain residual cell division in cells lacking RipA, but the partial redundancy provided by Ami1 is not sufficient during infection, as depletion of RipA prevents M. tuberculosis from replicating in macrophages and leads to dramatic killing of the bacteria in mice. Notably, RipA is essential for persistence of M. tuberculosis in mice, suggesting that cell division is required during chronic mouse infection. Despite the multiplicity of enzymes acting on PG with redundant functions, we have identified two PG hydrolases that are important for M. tuberculosis to replicate and persist in the host. IMPORTANCE Tuberculosis (TB) is a major global heath burden, with 1.6 million people succumbing to the disease every year. The search for new drugs to improve the current chemotherapeutic regimen is crucial to reducing this global health burden. The cell wall polymer peptidoglycan (PG) has emerged as a very successful drug target in bacterial pathogens, as many currently used antibiotics target the synthesis of this macromolecule. However, the multitude of genes encoding PG-synthesizing and PG-modifying enzymes with apparent redundant functions has hindered the identification of novel drug targets in PG synthesis in Mycobacterium tuberculosis. Here, we demonstrate that two PG-cleaving enzymes are important for virulence of M. tuberculosis. In particular, the d,l-endopeptidase RipA represents a potentially attractive drug target, as its depletion results in the clearance of M. tuberculosis from the host and renders the bacteria hypersusceptible to rifampin, a frontline TB drug, and to several cell wall-targeting antibiotics.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Małgorzata Korycka-Machała ◽  
Albertus Viljoen ◽  
Jakub Pawełczyk ◽  
Paulina Borówka ◽  
Bożena Dziadek ◽  
...  

ABSTRACT 1H-benzo[d]imidazole derivatives exhibit antitubercular activity in vitro at a nanomolar range of concentrations and are not toxic to human cells, but their mode of action remains unknown. Here, we showed that these compounds are active against intracellular Mycobacterium tuberculosis. To identify their target, we selected drug-resistant M. tuberculosis mutants and then used whole-genome sequencing to unravel mutations in the essential mmpL3 gene, which encodes the integral membrane protein that catalyzes the export of trehalose monomycolate, a precursor of the mycobacterial outer membrane component trehalose dimycolate (TDM), as well as mycolic acids bound to arabinogalactan. The drug-resistant phenotype was also observed in the parental strain overexpressing the mmpL3 alleles carrying the mutations identified in the resistors. However, no cross-resistance was observed between 1H-benzo[d]imidazole derivatives and SQ109, another MmpL3 inhibitor, or other first-line antitubercular drugs. Metabolic labeling and quantitative thin-layer chromatography (TLC) analysis of radiolabeled lipids from M. tuberculosis cultures treated with the benzoimidazoles indicated an inhibition of trehalose dimycolate (TDM) synthesis, as well as reduced levels of mycolylated arabinogalactan, in agreement with the inhibition of MmpL3 activity. Overall, this study emphasizes the pronounced activity of 1H-benzo[d]imidazole derivatives in interfering with mycolic acid metabolism and their potential for therapeutic application in the fight against tuberculosis.


2016 ◽  
Vol 60 (8) ◽  
pp. 4590-4599 ◽  
Author(s):  
Deepak Almeida ◽  
Thomas Ioerger ◽  
Sandeep Tyagi ◽  
Si-Yang Li ◽  
Khisimuzi Mdluli ◽  
...  

ABSTRACTThe novel ATP synthase inhibitor bedaquiline recently received accelerated approval for treatment of multidrug-resistant tuberculosis and is currently being studied as a component of novel treatment-shortening regimens for drug-susceptible and multidrug-resistant tuberculosis. In a limited number of bedaquiline-treated patients reported to date, ≥4-fold upward shifts in bedaquiline MIC during treatment have been attributed to non-target-based mutations inRv0678that putatively increase bedaquiline efflux through the MmpS5-MmpL5 pump. These mutations also confer low-level clofazimine resistance, presumably by a similar mechanism. Here, we describe a new non-target-based determinant of low-level bedaquiline and clofazimine cross-resistance inMycobacterium tuberculosis: loss-of-function mutations inpepQ(Rv2535c), which corresponds to a putative Xaa-Pro aminopeptidase.pepQmutants were selected in mice by treatment with clinically relevant doses of bedaquiline, with or without clofazimine, and were shown to have bedaquiline and clofazimine MICs 4 times higher than those for the parental H37Rv strain. Coincubation with efflux inhibitors verapamil and reserpine lowered bedaquiline MICs against both mutant and parent strains to a level below the MIC against H37Rv in the absence of efflux pump inhibitors. However, quantitative PCR (qPCR) revealed no significant differences in expression ofRv0678,mmpS5, ormmpL5between mutant and parent strains. Complementation of apepQmutant with the wild-type gene restored susceptibility, indicating that loss of PepQ function is sufficient for reduced susceptibility bothin vitroand in mice. Although the mechanism by which mutations inpepQconfer bedaquiline and clofazimine cross-resistance remains unclear, these results may have clinical implications and warrant further evaluation of clinical isolates with reduced susceptibility to either drug for mutations in this gene.


2012 ◽  
Vol 56 (10) ◽  
pp. 5142-5148 ◽  
Author(s):  
Catherine Vilchèze ◽  
William R. Jacobs

ABSTRACTThe challenges of developing new drugs to treat tuberculosis (TB) are indicated by the relatively small number of candidates entering clinical trials in the past decade. To overcome these issues, we reexamined two FDA-approved antibacterial drugs, sulfamethoxazole (SMX) and trimethoprim (TMP), for use in TB treatment. SMX and TMP inhibit folic acid biosynthesis and are used in combination to treat infections of the respiratory, urinary, and gastrointestinal tracts. The MICs of SMX and TMP, alone and in combination, were determined for drug-susceptible, multidrug-resistant (MDR), and extensively drug-resistantMycobacterium tuberculosisstrains. While TMP alone was not effective againstM. tuberculosis, the combination of TMP and SMX was bacteriostatic againstM. tuberculosis. Surprisingly, the combination of SMX and TMP was also active against a subset of MDRM. tuberculosisstrains. Treatment ofM. tuberculosiswith TMP-SMX and a first-line anti-TB drug, either isoniazid or rifampin, was bactericidal, demonstrating that the combination of TMP and SMX with isoniazid or rifampin was not antagonistic. Moreover, the addition of SMX-TMP in combination with either isoniazid or rifampin also prevented the emergence of drug resistancein vitro. In conclusion, this study further illustrates the opportunity to reevaluate the activity of TMP-SMXin vivoto prevent the emergence of drug-resistantM. tuberculosis.


mBio ◽  
2011 ◽  
Vol 2 (1) ◽  
Author(s):  
Gyanu Lamichhane ◽  
Joel S. Freundlich ◽  
Sean Ekins ◽  
Niluka Wickramaratne ◽  
Scott T. Nolan ◽  
...  

ABSTRACTAn organism requires a range of biomolecules for its growth. By definition, these are essential molecules which constitute the basic metabolic requirements of an organism. A small organic molecule with chemical similarity to that of an essential metabolite may bind to the enzyme that catalyzes its production and inhibit it, likely resulting in the stasis or death of the organism. Here, we report a high-throughput approach for identifying essential metabolites of an organism using genetic and biochemical approaches and then implement computational approaches to identify metabolite mimics. We generated and genotyped 5,126 Mycobacterium tuberculosismutants and performed a statistical analysis to determine putative essential genes. The essential molecules ofM. tuberculosiswere classified as products of enzymes that are encoded by genes in this list. Although incomplete, as many enzymes ofM. tuberculosishave yet to be identified and characterized, this is the first report of a large number of essential molecules of the organism. We identified essential metabolites of three distinct metabolic pathways inM. tuberculosisand selected molecules with chemical similarity using cheminformatics strategies that illustrate a variety of different pharmacophores. Our approach is aimed at systematic identification of essential molecules and their mimics as a blueprint for development of effective chemical probes ofM. tuberculosismetabolism, with the ultimate goal of seeking drugs that can kill this pathogen. As an illustration of this approach, we report that compounds JFD01307SC andl-methionine-S-sulfoximine, which share chemical similarity with an essential molecule ofM. tuberculosis, inhibited the growth of this organism at micromolar concentrations.IMPORTANCEThe estimate that more lives may have been lost in 2009 due to tuberculosis (TB) than in any year in history is alarming. Approximately 9.2 million new cases and 1.8 million deaths due to TB were reported in 2008. The widespread prevalence ofMycobacterium tuberculosisstrains that are resistant to drugs currently used to treat TB means that new drugs are urgently needed to treat these infections. Here, we have identified pathways for the biosynthesis of essential metabolites and associated enzymes inM. tuberculosisusing a genetics-based approach. Small molecules that mimic these essential metabolites were identified, and some of them were shown to inhibit the growth ofM. tuberculosis. Therefore, we illustrate an approach based on genetics to develop inhibitors that have the potential to be advanced as candidate drugs for treating TB.


2014 ◽  
Vol 58 (11) ◽  
pp. 6962-6965 ◽  
Author(s):  
Kriti Arora ◽  
Bernardo Ochoa-Montaño ◽  
Patricia S. Tsang ◽  
Tom L. Blundell ◽  
Stephanie S. Dawes ◽  
...  

ABSTRACTWe report here a series of five chemically diverse scaffolds that havein vitroactivities on replicating and hypoxic nonreplicating bacilli by targeting the respiratorybc1complex inMycobacterium tuberculosisin a strain-dependent manner. Deletion of the cytochromebdoxidase generated a hypersusceptible mutant in which resistance was acquired by a mutation inqcrB. These results highlight the promiscuity of thebc1complex and the risk of targeting energy metabolism with new drugs.


2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Iman Halloum ◽  
Albertus Viljoen ◽  
Varun Khanna ◽  
Derek Craig ◽  
Christiane Bouchier ◽  
...  

ABSTRACT Available chemotherapeutic options are very limited against Mycobacterium abscessus, which imparts a particular challenge in the treatment of cystic fibrosis (CF) patients infected with this rapidly growing mycobacterium. New drugs are urgently needed against this emerging pathogen, but the discovery of active chemotypes has not been performed intensively. Interestingly, however, the repurposing of thiacetazone (TAC), a drug once used to treat tuberculosis, has increased following the deciphering of its mechanism of action and the detection of significantly more potent analogues. We therefore report studies performed on a library of 38 TAC-related derivatives previously evaluated for their antitubercular activity. Several compounds, including D6, D15, and D17, were found to exhibit potent activity in vitro against M. abscessus, Mycobacterium massiliense, and Mycobacterium bolletii clinical isolates from CF and non-CF patients. Similar to TAC in Mycobacterium tuberculosis, the three analogues act as prodrugs in M. abscessus, requiring bioactivation by the EthA enzyme, MAB_0985. Importantly, mutations in the transcriptional TetR repressor MAB_4384, with concomitant upregulation of the divergently oriented adjacent genes encoding an MmpS5/MmpL5 efflux pump system, accounted for high cross-resistance levels among all three compounds. Overall, this study uncovered a new mechanism of drug resistance in M. abscessus and demonstrated that simple structural optimization of the TAC scaffold can lead to the development of new drug candidates against M. abscessus infections.


Sign in / Sign up

Export Citation Format

Share Document