scholarly journals Synthesis, Biological Evaluation, and Molecular Modeling Studies of Chiral Chloroquine Analogues as Antimalarial Agents

2018 ◽  
Vol 62 (12) ◽  
Author(s):  
Srinivasarao Kondaparla ◽  
Utsab Debnath ◽  
Awakash Soni ◽  
Vasantha Rao Dola ◽  
Manish Sinha ◽  
...  

ABSTRACT In a focused exploration, we designed, synthesized, and biologically evaluated chiral conjugated new chloroquine (CQ) analogues with substituted piperazines as antimalarial agents. In vitro as well as in vivo studies revealed that compound 7c showed potent activity (in vitro 50% inhibitory concentration, 56.98 nM for strain 3D7 and 97.76 nM for strain K1; selectivity index in vivo [up to at a dose of 12.5 mg/kg of body weight], 3,510) as a new lead antimalarial agent. Other compounds (compounds 6b, 6d, 7d, 7h, 8c, 8d, 9a, and 9c) also showed moderate activity against a CQ-sensitive strain (3D7) and superior activity against a CQ-resistant strain (K1) of Plasmodium falciparum. Furthermore, we carried out docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of all in-house data sets (168 molecules) of chiral CQ analogues to explain the structure-activity relationships (SAR). Our new findings specify the significance of the H-bond interaction with the side chain of heme for biological activity. In addition, the 3D-QSAR study against the 3D7 strain indicated the favorable and unfavorable sites of CQ analogues for incorporating steric, hydrophobic, and electropositive groups to improve the antimalarial activity.

2020 ◽  
Vol 16 ◽  
Author(s):  
Haicheng Liu ◽  
Yushi Futamura ◽  
Honghai Wu ◽  
Aki Ishiyama ◽  
Taotao Zhang ◽  
...  

Background: Malaria is one of the most devastating parasitic diseases, yet the discovery of antimalarial agents remains profoundly challenging. Very few new antimalarials have been developed in the past 50 years, while the emergence of drug-resistance continues to appear. Objective: This study focuses on the discovery, design, synthesis, and antimalarial evaluation of 3-cinnamamido-N-substituted benzamides. Method: In this study, a screening of our compound library was carried out against the multidrug-sensitive Plasmodium falciparum 3D7 strain. Derivatives of the hit were designed, synthesized and tested against P. falciparum 3D7 and the in vivo antimalarial activity of the most active compounds was evaluated using the method of Peters’ 4-day suppressive test. Results: The retrieved hit compound 1 containing a 3-cinnamamido-N-substituted benzamide skeleton showed moderate antimalarial activity (IC50 = 1.20 µM) for the first time. A series of derivatives were then synthesized through a simple four-step workflow, and half of them exhibited slightly better antimalarial effect than the precursor 1 during the subsequent in vitro assays. Additionally, compounds 11, 23, 30 and 31 displayed potent activity with IC50 values of approximately 0.1 µM, and weak cytotoxicity against mammalian cells. However, in vivo antimalarial activity is not effective which might be ascribed to the poor solubility of these compounds. Conclusion: In this study, phenotypic screen of our compound library resulted in the first report of 3-cinnamamide framework with antimalarial activity and 40 derivatives were then designed and synthesized. Subsequent structure-activity studies showed that compounds 11, 23, 30 and 31 exhibited the most potent and selective activity against P. falciparum 3D7 strain with IC50 values around 0.1 µM. Our work herein sets another example of phenotypic screen-based drug discovery, leading to potentially promising candidates of novel antimalarial agents once given further optimization.


2009 ◽  
Vol 53 (4) ◽  
pp. 1320-1324 ◽  
Author(s):  
M. O. Faruk Khan ◽  
Mark S. Levi ◽  
Babu L. Tekwani ◽  
Shabana I. Khan ◽  
Eiichi Kimura ◽  
...  

ABSTRACT In an attempt to augment the efficacy of 7-chloro 4-aminoquinoline analogs and also to overcome resistance to antimalarial agents, we synthesized three cyclen (1,4,7,10-tetraazacyclododecane) analogs of chloroquine [a bisquinoline derivative, 7-chloro-4-(1,4,7,10-tetraaza-cyclododec-1-yl)-quinoline HBr, and a 7-chloro-4-(1,4,7,10-tetraaza-cyclododec-1-yl)-quinoline-Zn2+ complex]. The bisquinoline displays the most potent in vitro and in vivo antimalarial activities. It displays 50% inhibitory concentrations (IC50s) of 7.5 nM against the D6 (chloroquine-sensitive) clone of Plasmodium falciparum and 19.2 nM against the W2 (chloroquine-resistant) clone, which are comparable to those of artemisinin (10.6 and 5.0 nM, respectively) and lower than those of chloroquine (10.7 and 87.2 nM, respectively), without any evidence of cytotoxicity to mammalian cells, indicating a high selectivity index (>1,333 against D6 clone and >521 against W2 clone). Potent antimalarial activities of the bisquinoline against chloroquine- and mefloquine-resistant strains of P. falciparum were also confirmed by in vitro [3H]hypoxanthine incorporation assay. The in vivo antimalarial activity of the bisquinoline, as determined in P. berghei-infected mice, is comparable to that of chloroquine (50% effective dose, ≤1.1 mg/kg when given orally); no apparent toxicity has been observed up to the highest dose tested (3 × 30 mg/kg). The bisquinoline inhibits in vitro hemozoin (β-hematin) formation with an IC50 of 1.1 μM, which is about 10-fold more potent than chloroquine (IC50 9.5 μM). Overall, this article describes the discovery of a new class of cyclen 4-aminoquinoline analogs as potent antimalarial drugs.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Dejen Nureye ◽  
Solomon Assefa ◽  
Teshome Nedi ◽  
Ephrem Engidawork

Background. Evolution of antimalarial drug resistance makes the development of new drugs a necessity. Important source in search of such drugs is medicinal plants.Gardenia ternifoliaplant is used in Ethiopian traditional medicine for the treatment of malaria and is endowed within vitroantimalarial activity. Herein, thein vivoantimalarial activity of the plant was investigated.Methods. Acute toxicity was carried out using a standard procedure. A 4-day suppressive test was employed to evaluate the antimalarial effect of methanolic crude extract and solvent fractions of the plant. The curative and prophylactic effect of crude extract was further tested by Ranes’s test and residual infection procedure, respectively, usingPlasmodium berghei(ANKA strain) in Swiss albino mice.Results. The chemosuppressive effect exerted by the crude extract and fractions ranged between 30-59% and 14-51%, respectively. Curative and prophylactic effects of the crude extract were in the range of 36-63% and 24-37%, respectively. All dose levels of the crude extract prevented loss of weight, reduction in temperature, and anemia on early and established infection. Butanol and chloroform fractions also did reverse reduction in temperature, body weight, and packed cell volume.Conclusions. The results indicated that the plant has a promising antiplasmodial activity and it could be considered as a potential source to develop new antimalarial agents.


2018 ◽  
Vol 18 (2) ◽  
pp. 114-123 ◽  
Author(s):  
Xin-Liang Hu ◽  
Chuan Gao ◽  
Zhi Xu ◽  
Ming-Liang Liu ◽  
Lian-Shun Feng ◽  
...  

Malaria still remains one of the leading deadliest diseases throughout the world, leading to around 1 million deaths annually. The emergence and spread of growing resistance to the firstline antimalarials are an alarming the serious problem in malaria control, demanding the need for new drugs more potent than earlier with improved Absorption, Distribution, Metabolism, and Excretion (ADME) profiles. Coumarins, which exhibited various biological properties, also displayed potential in vitro antiplasmodial and in vivo antimalarial activities. Moreover, many of coumarin derivatives have already been used in clinical practice for the treatment of several diseases. Therefore, coumarin derivatives play a pivotal role in medicinal chemistry, also making them promising candidates for the treatment of malaria. This review aims to summarize the recent advances made towards the development of coumarin-containing derivatives as antiplasmodial and antimalarial agents and their structure-activity relationship is also discussed.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1753 ◽  
Author(s):  
Joanna Ziemska ◽  
Jolanta Solecka ◽  
Małgorzata Jarończyk

Cancers are the leading cause of deaths worldwide. In 2018, an estimated 18.1 million new cancer cases and 9.6 million cancer-related deaths occurred globally. Several previous studies have shown that the enzyme, leucine aminopeptidase is involved in pathological conditions such as cancer. On the basis of the knowledge that isoquinoline alkaloids have antiproliferative activity and inhibitory activity towards leucine aminopeptidase, the present study was conducted a study which involved database search, virtual screening, and design of new potential leucine aminopeptidase inhibitors with a scaffold based on 3,4-dihydroisoquinoline. These compounds were then filtered through Lipinski’s “rule of five,” and 25 081 of them were then subjected to molecular docking. Next, three-dimensional quantitative structure-activity relationship (3D-QSAR) study was performed for the selected group of compounds with the best binding score results. The developed model, calculated by leave-one-out method, showed acceptable predictive and descriptive capability as represented by standard statistical parameters r2 (0.997) and q2 (0.717). Further, 35 compounds were identified to have an excellent predictive reliability. Finally, nine selected compounds were evaluated for drug-likeness and different pharmacokinetics parameters such as absorption, distribution, metabolism, excretion, and toxicity. Our methodology suggested that compounds with 3,4-dihydroisoquinoline moiety were potentially active in inhibiting leucine aminopeptidase and could be used for further in-depth in vitro and in vivo studies.


2007 ◽  
Vol 51 (4) ◽  
pp. 1463-1472 ◽  
Author(s):  
Françoise Benoit-Vical ◽  
Joël Lelièvre ◽  
Antoine Berry ◽  
Caroline Deymier ◽  
Odile Dechy-Cabaret ◽  
...  

ABSTRACT Malaria is the third most significant cause of infectious disease in the world. The search for new antimalarial chemotherapy has become increasingly urgent due to parasite resistance to classical drugs. Trioxaquines are synthetic hybrid molecules containing a trioxane motif (which is responsible for the antimalarial activity of artemisinin) linked to an aminoquinoline entity (which is responsible for the antiplasmodial properties of chloroquine). These trioxaquines are highly potent against young erythrocytic stages of Plasmodium falciparum and exhibit efficient activity in vitro against chloroquine-sensitive and -resistant strains of P. falciparum (50% inhibitory concentration, 4 to 32 nM) and are also active in vivo against P. vinckei petteri and P. yoelii nigeriensis in suppressive and curative murine tests. The trioxaquine DU1302 is one of these promising antimalarial agents. The present study confirms the absence of toxicity of this drug on cell lines and in a mice model. Moreover, DU1302 exhibits potent activity against gametocytes, the form transmitted by mosquitoes, as killing of the gametocytes is essential to limit the spread of malaria. The ease of chemical synthesis of this trioxaquine prototype should be considered an additional advantage and would make these drugs affordable without perturbations of the drug supply.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1983 ◽  
Author(s):  
Kunal Kumar ◽  
Peng Wang ◽  
Ethan A. Swartz ◽  
Susmita Khamrui ◽  
Cody Secor ◽  
...  

Recently, we have shown that harmine induces β-cell proliferation both in vitro and in vivo, mediated via the DYRK1A-NFAT pathway. We explore structure–activity relationships of the 7-position of harmine for both DYRK1A kinase inhibition and β-cell proliferation based on our related previous structure–activity relationship studies of harmine in the context of diabetes and β-cell specific targeting strategies. 33 harmine analogs of the 7-position substituent were synthesized and evaluated for biological activity. Two novel inhibitors were identified which showed DYRK1A inhibition and human β-cell proliferation capability. The DYRK1A inhibitor, compound 1-2b, induced β-cell proliferation half that of harmine at three times higher concentration. From these studies we can draw the inference that 7-position modification is limited for further harmine optimization focused on β-cell proliferation and cell-specific targeting approach for diabetes therapeutics.


Sign in / Sign up

Export Citation Format

Share Document