scholarly journals Antiviral Activities of Different Interferon Types and Subtypes against Hepatitis E Virus Replication

2016 ◽  
Vol 60 (4) ◽  
pp. 2132-2139 ◽  
Author(s):  
Daniel Todt ◽  
Catherine François ◽  
Anggakusuma ◽  
Patrick Behrendt ◽  
Michael Engelmann ◽  
...  

ABSTRACTHepatitis E virus (HEV) is the causative agent of hepatitis E in humans and a member of the genusOrthohepevirusin the familyHepeviridae. HEV infections are the common cause of acute hepatitis but can also take chronic courses. Ribavirin is the treatment of choice for most patients, and type I interferon (IFN) has been evaluated in a few infected transplant patientsin vivo. In this study, the antiviral effects of different exogenously administered interferons were investigated by using state-of-the-art subgenomic replicon and full-length HEV genome cell culture models. Hepatitis C virus (HCV) subgenomic replicons based on the genotype 2a JFH1 isolate served as the reference. The experiments revealed that HEV RNA replication was inhibited by the application of all types of IFN, including IFN-α (type I), IFN-γ (type II), and IFN-λ3 (type III), but to a far lesser extent than HCV replication. Simultaneous determination of interferon-stimulated gene (ISG) expression levels for all IFN types demonstrated efficient downregulation by HEV. Furthermore, different IFN-α subtypes were also able to block viral replication in combination with ribavirin. The IFN-α subtypes 2a and 2b exerted the strongest antiviral activity against HEV. In conclusion, these data demonstrate for the first time moderate anti-HEV activities of types II and III IFNs and different IFN-α subtypes. As HEV employed a potent anti-interferon mechanism by restricting ISG expression, exogenous application of IFNs as immunotherapy should be carefully assessed.

Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1180
Author(s):  
Kush Kumar Yadav ◽  
Scott P. Kenney

Hepatitis E virus is an important emerging pathogen producing a lethal impact on the pregnant population and immunocompromised patients. Starting in 1983, it has been described as the cause for acute hepatitis transmitted via the fecal–oral route. However, zoonotic and blood transfusion transmission of HEV have been reported in the past few decades, leading to the detailed research of HEV pathogenesis. The reason behind HEV being highly virulent to the pregnant population particularly during the third trimester, leading to maternal and fetal death, remains unknown. Various host factors (immunological, nutritional, hormonal) and viral factors have been studied to define the key determinants assisting HEV to be virulent in pregnant and immunocompromised patients. Similarly, chronic hepatitis is seen particularly in solid organ transplant patients, resulting in fatal conditions. This review describes recent advances in the immunopathophysiology of HEV infections in general, pregnant, and immunocompromised populations, and further elucidates the in vitro and in vivo models utilized to understand HEV pathogenesis.


2013 ◽  
Vol 58 (1) ◽  
pp. 267-273 ◽  
Author(s):  
Yannick Debing ◽  
Suzanne U. Emerson ◽  
Yijin Wang ◽  
Qiuwei Pan ◽  
Jan Balzarini ◽  
...  

ABSTRACTHepatitis E virus (HEV) is a common cause of acute hepatitis that results in high mortality in pregnant women and may establish chronic infections in immunocompromised patients. We demonstrate for the first time that alpha interferon (IFN-α) and ribavirin inhibitin vitroHEV replication in both a subgenomic replicon and an infectious culture system based on a genotype 3 strain. IFN-α showed a moderate but significant synergism with ribavirin. These findings corroborate the reported clinical effectiveness of both drugs. In addition, the antiviral activity of ribavirin against wild-type genotype 1, 2, and 3 strains was confirmed by immunofluorescence staining. Furthermore, thein vitroactivity of ribavirin depends on depletion of intracellular GTP pools, which is evident from the facts that (i) other GTP-depleting agents (5-ethynyl-1-β-d-ribofuranosylimidazole-4-carboxamide [EICAR] and mycophenolic acid) inhibit viral replication, (ii) exogenously added guanosine reverses the antiviral effects, and (iii) a strong correlation (R2= 0.9998) exists between the antiviral activity and GTP depletion of ribavirin and other GTP-depleting agents.


2020 ◽  
Author(s):  
Yukio Oshiro ◽  
Hiroshi Harada ◽  
Kiyoshi Hasegawa ◽  
Naotake Akutsu ◽  
Tomoharu Yoshizumi ◽  
...  

Author(s):  
Yunlong Li ◽  
Zhijiang Miao ◽  
Pengfei Li ◽  
Ruyi Zhang ◽  
Denis E. Kainov ◽  
...  

AbstractWe show that ivermectin, an FDA-approved anti-parasitic drug, effectively inhibits infection with hepatitis E virus (HEV) genotypes 1 and 3 in a range of cell culture models, including hepatic and extrahepatic cells. Long-term treatment showed no clear evidence of the development of drug resistance. Gene silencing of importin-α1, a cellular target of ivermectin and a key member of the host nuclear transport complex, inhibited viral replication and largely abolished the anti-HEV effect of ivermectin.


2019 ◽  
Vol 85 (23) ◽  
Author(s):  
Patricia L. Baker ◽  
Gregory S. Orf ◽  
Kimberly Kevershan ◽  
Michael E. Pyne ◽  
Taner Bicer ◽  
...  

ABSTRACT In Heliobacterium modesticaldum, as in many Firmicutes, deleting genes by homologous recombination using standard techniques has been extremely difficult. The cells tend to integrate the introduced plasmid into the chromosome by a single recombination event rather than perform the double recombination required to replace the targeted locus. Transformation with a vector containing only a homologous recombination template for replacement of the photochemical reaction center gene pshA produced colonies with multiple genotypes, rather than a clean gene replacement. To address this issue, we required an additional means of selection to force a clean gene replacement. In this study, we report the genetic structure of the type I-A and I-E CRISPR-Cas systems from H. modesticaldum, as well as methods to leverage the type I-A system for genome editing. In silico analysis of the CRISPR spacers revealed a potential consensus protospacer adjacent motif (PAM) required for Cas3 recognition, which was then tested using an in vivo interference assay. Introduction of a homologous recombination plasmid that carried a miniature CRISPR array targeting sequences in pshA (downstream of a naturally occurring PAM sequence) produced nonphototrophic transformants with clean replacements of the pshA gene with ∼80% efficiency. Mutants were confirmed by PCR, sequencing, optical spectroscopy, and growth characteristics. This methodology should be applicable to any genetic locus in the H. modesticaldum genome. IMPORTANCE The heliobacteria are the only phototrophic members of the largely Gram-positive phylum Firmicutes, which contains medically and industrially important members, such as Clostridium difficile and Clostridium acetobutylicum. Heliobacteria are of interest in the study of photosynthesis because their photosynthetic system is unique and the simplest known. Since their discovery in the early 1980s, work on the heliobacteria has been hindered by the lack of a genetic transformation system. The problem of introducing foreign DNA into these bacteria has been recently rectified by our group; however, issues still remained for efficient genome editing. The significance of this work is that we have characterized the endogenous type I CRISPR-Cas system in the heliobacteria and leveraged it to assist in genome editing. Using the CRISPR-Cas system allowed us to isolate transformants with precise replacement of the pshA gene encoding the main subunit of the photochemical reaction center.


2012 ◽  
Vol 78 (21) ◽  
pp. 7662-7670 ◽  
Author(s):  
Mathieu Meessen-Pinard ◽  
Ognjen Sekulovic ◽  
Louis-Charles Fortier

ABSTRACTProphages contribute to the evolution and virulence of most bacterial pathogens, but their role inClostridium difficileis unclear. Here we describe the isolation of fourMyoviridaephages, ϕMMP01, ϕMMP02, ϕMMP03, and ϕMMP04, that were recovered as free viral particles in the filter-sterilized stool supernatants of patients suffering fromC. difficileinfection (CDI). Furthermore, identical prophages were found in the chromosomes ofC. difficileisolated from the corresponding fecal samples. We therefore provide, for the first time, evidence ofin vivoprophage induction during CDI. We completely sequenced the genomes of ϕMMP02 and ϕMMP04, and bioinformatics analyses did not reveal the presence of virulence factors but underlined the unique character of ϕMMP04. We also studied the mobility of ϕMMP02 and ϕMMP04 prophagesin vitro. Both prophages were spontaneously induced, with 4 to 5 log PFU/ml detected in the culture supernatants of the corresponding lysogens. When lysogens were grown in the presence of subinhibitory concentrations of ciprofloxacin, moxifloxacin, levofloxacin, or mitomycin C, the phage titers further increased, reaching 8 to 9 log PFU/ml in the case of ϕMMP04. In summary, our study highlights the extensive genetic diversity and mobility ofC. difficileprophages. Moreover, antibiotics known to represent risk factors for CDI, such as quinolones, can stimulate prophage mobilityin vitroand probablyin vivoas well, which underscores their potential impact on phage-mediated horizontal gene transfer events and the evolution ofC. difficile.


2018 ◽  
Vol 102 (4) ◽  
pp. e126-e127
Author(s):  
Mary A. Lim ◽  
Saleem Kamili ◽  
Jordana B. Cohen ◽  
Tracy Green-Montfort ◽  
Alexandra Tejada-Strop ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Ling-Dong Xu ◽  
Fei Zhang ◽  
Lei Peng ◽  
Wen-Ting Luo ◽  
Chu Chen ◽  
...  

Hepatitis E virus (HEV) is one of the major etiological agents responsible for acute hepatitis. Hepatitis E virus does not replicate efficiently in mammalian cell cultures, thus a useful model that mimics persistent HEV replication is needed to dissect the molecular mechanism of pathogenesis. Here we report a genotype-3 HEV RNA replicon expressing an EGFP-Zeocin (EZ) resistant gene (p6-EZ) that persistently self-replicated in cell lines of human (Huh-7-S10-3) or hamster (BHK-21) origin after transfection with in vitro RNA transcripts and subsequent drug screening. Two cell lines, S10-3-EZ and BHK-21-EZ, stably expressed EGFP in the presence of Zeocin during continuous passages. Both genomic and subgenomic HEV RNAs and viral replicase proteins were stably expressed in persistent HEV replicon cells. The values of the cell models in antiviral testing, innate immune RNA sensing and type I IFN in host defense were further demonstrated. We revealed a role of RIG-I like receptor-interferon regulatory factor 3 in host antiviral innate immune sensing during HEV replication. We further demonstrated that treatment with interferon (IFN-α) or ribavirin significantly reduced expression of replicon RNA in a dose-dependent manner. The availability of the models will greatly facilitate HEV-specific antiviral development, and delineate mechanisms of HEV replication.


Sign in / Sign up

Export Citation Format

Share Document