scholarly journals Hepatitis C Virus Protease Inhibitors Show Differential Efficacy and Interactions with Remdesivir for Treatment of SARS-CoV-2 in Vitro

Author(s):  
Karen A. Gammeltoft ◽  
Yuyong Zhou ◽  
Carlos R. Duarte Hernandez ◽  
Andrea Galli ◽  
Anna Offersgaard ◽  
...  

Antivirals targeting SARS-CoV-2 could improve treatment of COVID-19. We evaluated efficacy of clinically relevant hepatitis C virus (HCV) NS3 protease inhibitors (PI) against SARS-CoV-2 and their interactions with remdesivir, the only direct-acting antiviral approved for COVID-19 treatment. HCV PI showed differential potency in short-term treatment assays based on detection of SARS-CoV-2 Spike protein in VeroE6 cells. Linear PI boceprevir, telaprevir and narlaprevir had 50% effective concentrations (EC50) of ∼40 μM. Among macrocyclic PI, simeprevir had the highest (EC50 15 μM) and glecaprevir the lowest (EC50 >178 μM) potency, with paritaprevir, grazoprevir, voxilaprevir, vaniprevir, danoprevir and deldeprevir in between. Acyclic PI asunaprevir and faldaprevir had EC50 of 72 and 23 μM, respectively. ACH-806, inhibiting the HCV NS4A protease cofactor, had EC50 of 46 μM. Similar and slightly increased PI potencies were found in human hepatoma Huh7.5 cells and human lung carcinoma A549-hACE2 cells, respectively. Selectivity indexes based on antiviral and cell viability assays were highest for linear PI. In short-term treatments, combination of macrocyclic but not linear PI with remdesivir showed synergism in VeroE6 and A549-hACE2 cells. Longer-term treatment of infected VeroE6 and A549-hACE2 cells with 1-fold EC50 PI revealed minor differences in barrier to SARS-CoV-2 escape. Viral suppression was achieved with 3- to 8-fold EC50 boceprevir or 1-fold EC50 simeprevir or grazoprevir, but not boceprevir, in combination with 0.4- to 0.8-fold EC50 remdesivir; these concentrations did not lead to viral suppression in single treatments. This study could inform development and application of protease inhibitors for optimized antiviral treatments of COVID-19.

2020 ◽  
Author(s):  
Karen A. Gammeltoft ◽  
Yuyong Zhou ◽  
Andrea Galli ◽  
Anna Offersgaard ◽  
Long V. Pham ◽  
...  

AbstractAntivirals targeting SARS-CoV-2 could improve treatment of COVID-19. We evaluated the efficacy of clinically relevant hepatitis C virus (HCV) NS3 protease inhibitors (PI) against SARS-CoV-2 and their interactions with remdesivir, the only antiviral approved for treatment of COVID-19. HCV PI showed differential potency in VeroE6 cell-based antiviral assays based on detection of the SARS-CoV-2 Spike protein. Linear PI boceprevir, telaprevir and narlaprevir had 50% effective concentrations (EC50) of ~40 μM. Among macrocyclic PI simeprevir, paritaprevir, grazoprevir, glecaprevir, voxilaprevir, vaniprevir, danoprevir and deldeprevir, simeprevir had the highest (EC50 15 μM) and glecaprevir the lowest (EC50 >178 μM) potency. Acyclic PI asunaprevir and faldaprevir had EC50 of 72 and 23 μM, respectively. ACH-806, an HCV NS3 protease co-factor NS4A inhibitor, had EC50 of 46 μM. For selected PI, potency was similar in human hepatoma Huh7.5 cells. Selectivity indexes, based on antiviral and cell viability assays, were highest for linear PI. In combination with remdesivir, linear PI boceprevir and narlaprevir showed antagonism, while macrocyclic PI simeprevir, paritaprevir and grazoprevir showed synergism with drug reduction indexes of up to 27 for simeprevir. Treatment of infected cultures with equipotent concentrations (1-fold EC50) of HCV PI revealed minor differences in barrier to SARS-CoV-2 escape. Complete viral suppression was achieved treating with ≥3-fold EC50 boceprevir or combination of 1-fold EC50 simeprevir with 0.4-fold EC50 remdesivir, not leading to significant viral suppression in single treatments. Considering potency, human plasma concentrations and synergism with remdesivir, simeprevir seemed the most promising compound for optimization of future antiviral treatments of COVID-19.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Stephen Ejeh ◽  
Adamu Uzairu ◽  
Gideon Adamu Shallangwa ◽  
Stephen E. Abechi

Abstract Background Hepatitis C virus (HCV) is a global medical condition that causes several life-threatening chronic diseases in the liver. The conventional interferon-free treatment regimens are currently in use by a blend of direct-acting antiviral agents (DAAs) aiming at the viral NS3 protease. However, major concerns may be the issue of DAA-resistant HCV strains and the limited availability to the DAAs due to their high price. Due to this crisis, the developments of a new molecule with high potency as an NS3/4A protease inhibitor of the hepatitis-C virus remain a high priority for medical research. This study aimed to use in-silico methods to identify high potent molecule as an NS3/4A protease inhibitor and investigating the binding energy of the identified molecule in comparison with approved direct-acting antiviral agents (Telaprevir, Simeprevir, and Voxilaprevir) through molecular docking. Results The model obtained by in-silico method have the following statistical records, coefficient of determination (r2) of 0.7704, cross-validation (q2LOO = 0.6914); external test set (r2(pred) = 0.7049) and Y-randomization assessment (cR2p = 0.7025). The results from the model were used to identify 12 new potential human HCV NS3/4A protease inhibitors, and it was observed that the identified molecule is well-fixed when docked with the receptor and was found to have the lowest binding energy of − 10.7, compared to approved direct-acting antiviral agents (Telaprevir, Simeprevir, and Voxilaprevir) with − 9.5, − 10.0, − 10.5 binding energy, respectively. Conclusion The binding affinity (− 10.7) of the newly identified molecule docked with 3D structures of HCV NS3/4a protease/helicase (PDB ID: 4A92) was found to be better than that of Telaprevir, Simeprevir, and Voxilaprevir (approved direct-acting antiviral agents) which are − 9.5, − 10.0, and − 10.5, respectively. Hence, a novel molecule was identified showing high potency as HCV NS3/4a protease inhibitors.


2006 ◽  
Vol 164 ◽  
pp. S110-S111
Author(s):  
Maria Barca ◽  
Anne Marie Ciobanu ◽  
Dan Balalau ◽  
Daniela Luiza Baconi ◽  
Mihaela Ilie ◽  
...  

2014 ◽  
Vol 50 (2) ◽  
pp. 251-256
Author(s):  
Igor Vivian de Almeida ◽  
Giovana Domingues ◽  
Lilian Capelari Soares ◽  
Elisângela Düsman ◽  
Veronica Elisa Pimenta Vicentini

Flunitrazepam (FNZ) is a sedative benzodiazepine prescribed for the short-term treatment of insomnia. However, there are concerns regarding possible carcinogenic or genotoxic effects of this medicine. Thus, the aim of this study was to evaluate the cytotoxic, clastogenic and aneugenic effects of FNZ in hepatoma cells from Rattus norvegicus (HTC) in vitro and in bone marrow cells of Wistar rats in vivo. These effects were examined in vitro following treatment with 0.2, 1.0, 5.0 or 10 μg/mL FNZ using a micronucleus test with a cytokinesis block or in vivo using a chromosomal aberration test following treatment with 7, 15 or 30 μg/mL/kg body weight. The results showed that the benzodiazepine concentrations tested were not cytotoxic, aneugenic or clastogenic. However, considering the adverse effects of using this benzodiazepine, more studies are required.


2005 ◽  
Vol 49 (4) ◽  
pp. 1381-1390 ◽  
Author(s):  
Victoria Chung ◽  
Anthony R. Carroll ◽  
Norman M. Gray ◽  
Nigel R. Parry ◽  
Pia A. Thommes ◽  
...  

ABSTRACT A recombinant vaccinia virus, expressing the NS3-to-NS5 region of the N clone of hepatitis C virus (HCV), was generated and utilized both in a gel-based assay and in an enzyme-linked immunosorbent assay (ELISA) to evaluate the pyrrolidine-5,5-trans-lactams, a series of inhibitors of the HCV NS3/4A protease. The absolute levels of processed, mature HCV nonstructural proteins in this system were found to decrease in the presence of the trans-lactams. Monitoring of this reduction enabled end points and 50% inhibitory concentrations to be calculated in order to rank the active compounds according to potency. These compounds had no effect on the transcription or translation of the NS3-5 polyprotein at concentrations shown to inhibit NS3/4A protease, and they were shown to be specific inhibitors of this protease. The ELISA, originally developed using the vaccinia virus expression system, was modified to utilize Huh-7 cells containing an HCV replicon. Results with this assay correlated well with those obtained with the recombinant vaccinia virus assays. These results demonstrate the utility of these assays for the characterization of NS3/4A protease inhibitors. In addition, inhibitors of other viral targets, such as polymerase and helicase, can be evaluated in the context of the replicon ELISA.


Reproduction ◽  
2005 ◽  
Vol 130 (3) ◽  
pp. 303-310 ◽  
Author(s):  
Atef Ali ◽  
Marc-André Sirard

The aim of this study was to investigate the effect of short-term treatment (first 2 or 6 h) with recombinant human follicle-stimulating hormone (r-hFSH) during in vitro maturation (IVM) on the developmental competence of bovine oocytes. The roles of protein kinase A (PKA) and protein kinase C (PKC) (possibly involved in FSH response), were investigated using activators (Sp-cAMPS, PMA) or inhibitors (Rp-cAMPS, sphingosine) of these two protein kinases, respectively. The developmental competence of bovine oocytes was measured by the rate of blastocyst formation after in vitro fertilization (IVF). Our results showed that when cumulus–oocyte complexes (COCs) were cultured with r-hFSH for the first 6 h, a highly significant (P < 0.0001) improvement is seen in blastocyst development rate as a proportion of oocytes in culture compared with those matured with r-hFSH for the first 2 or 24 h. A transient exposure (6 h) to the highest dose (100 μM) of forskolin (an activator of adenylate cyclase) increased (P < 0.05) the rate of blastocyst formation. But the PKA inhibitors (Rp-cAMPS) did not affect the stimulatory effects of r-hFSH on the blastocyst yield. However, stimulation of PKC by low doses of PMA (0.1–0.5 μM) during short-term treatment, enhanced (P < 0.0001) the developmental capacity of oocytes, while sphingosine (a specific inhibitor of PKC) inhibited (P < 0.05) the stimulatory effects of r-hFSH on the rate of blastocyst formation. Our results indicate that although the developmental capacity of bovine oocytes in vitro can be modulated by both the PKA, and the PKC pathways, the activation of PKC during short-term treatment can mimic the effect of r-hFSH on the cytoplasmic maturation in bovine oocytes in vitro.


2014 ◽  
Vol 59 (2) ◽  
pp. 988-997 ◽  
Author(s):  
Tami Pilot-Matias ◽  
Rakesh Tripathi ◽  
Daniel Cohen ◽  
Isabelle Gaultier ◽  
Tatyana Dekhtyar ◽  
...  

ABSTRACTThe development of direct-acting antiviral agents is a promising therapeutic advance in the treatment of hepatitis C virus (HCV) infection. However, rapid emergence of drug resistance can limit efficacy and lead to cross-resistance among members of the same drug class. ABT-450 is an efficacious inhibitor of HCV NS3/4A protease, with 50% effective concentration values of 1.0, 0.21, 5.3, 19, 0.09, and 0.69 nM against stable HCV replicons with NS3 protease from genotypes 1a, 1b, 2a, 3a, 4a, and 6a, respectively.In vitro, the most common amino acid variants selected by ABT-450 in genotype 1 were located in NS3 at positions 155, 156, and 168, with the D168Y variant conferring the highest level of resistance to ABT-450 in both genotype 1a and 1b replicons (219- and 337-fold, respectively). In a 3-day monotherapy study with HCV genotype 1-infected patients, ABT-450 was coadministered with ritonavir, a cytochrome P450 3A4 inhibitor shown previously to markedly increase peak, trough, and overall drug exposures of ABT-450. A mean maximum HCV RNA decline of 4.02 log10was observed at the end of the 3-day dosing period across all doses. The most common variants selected in these patients were R155K and D168V in genotype 1a and D168V in genotype 1b. However, selection of resistant variants was significantly reduced at the highest ABT-450 dose compared to lower doses. These findings were informative for the subsequent evaluation of ABT-450 in combination with additional drug classes in clinical trials in HCV-infected patients. (Study M11-602 is registered at ClinicalTrials.gov under registration no. NCT01074008.)


Sign in / Sign up

Export Citation Format

Share Document