scholarly journals Evaluation of SSYA10-001 as a Replication Inhibitor of Severe Acute Respiratory Syndrome, Mouse Hepatitis, and Middle East Respiratory Syndrome Coronaviruses

2014 ◽  
Vol 58 (8) ◽  
pp. 4894-4898 ◽  
Author(s):  
Adeyemi O. Adedeji ◽  
Kamalendra Singh ◽  
Ademola Kassim ◽  
Christopher M. Coleman ◽  
Ruth Elliott ◽  
...  

ABSTRACTWe have previously shown that SSYA10-001 blocks severe acute respiratory syndrome coronavirus (SARS-CoV) replication by inhibiting SARS-CoV helicase (nsp13). Here, we show that SSYA10-001 also inhibits replication of two other coronaviruses, mouse hepatitis virus (MHV) and Middle Eastern respiratory syndrome coronavirus (MERS-CoV). A putative binding pocket for SSYA10-001 was identified and shown to be similar in SARS-CoV, MERS-CoV, and MHV helicases. These studies show that it is possible to target multiple coronaviruses through broad-spectrum inhibitors.

2016 ◽  
Vol 91 (5) ◽  
Author(s):  
Stephen A. Goldstein ◽  
Joshua M. Thornbrough ◽  
Rong Zhang ◽  
Babal K. Jha ◽  
Yize Li ◽  
...  

ABSTRACT Viruses in the family Coronaviridae, within the order Nidovirales, are etiologic agents of a range of human and animal diseases, including both mild and severe respiratory diseases in humans. These viruses encode conserved replicase and structural proteins as well as more diverse accessory proteins, encoded in the 3′ ends of their genomes, that often act as host cell antagonists. We previously showed that 2′,5′-phosphodiesterases (2′,5′-PDEs) encoded by the prototypical Betacoronavirus, mouse hepatitis virus (MHV), and by Middle East respiratory syndrome-associated coronavirus antagonize the oligoadenylate-RNase L (OAS-RNase L) pathway. Here we report that additional coronavirus superfamily members, including lineage A betacoronaviruses and toroviruses infecting both humans and animals, encode 2′,5′-PDEs capable of antagonizing RNase L. We used a chimeric MHV system (MHVMut) in which exogenous PDEs were expressed from an MHV backbone lacking the gene for a functional NS2 protein, the endogenous RNase L antagonist. With this system, we found that 2′,5′-PDEs encoded by the human coronavirus HCoV-OC43 (OC43; an agent of the common cold), human enteric coronavirus (HECoV), equine coronavirus (ECoV), and equine torovirus Berne (BEV) are enzymatically active, rescue replication of MHVMut in bone marrow-derived macrophages, and inhibit RNase L-mediated rRNA degradation in these cells. Additionally, PDEs encoded by OC43 and BEV rescue MHVMut replication and restore pathogenesis in wild-type (WT) B6 mice. This finding expands the range of viruses known to encode antagonists of the potent OAS-RNase L antiviral pathway, highlighting its importance in a range of species as well as the selective pressures exerted on viruses to antagonize it. IMPORTANCE Viruses in the family Coronaviridae include important human and animal pathogens, including the recently emerged viruses severe acute respiratory syndrome-associated coronavirus (SARS-CoV) and Middle East respiratory syndrome-associated coronavirus (MERS-CoV). We showed previously that two viruses within the genus Betacoronavirus, mouse hepatitis virus (MHV) and MERS-CoV, encode 2′,5′-phosphodiesterases (2′,5′-PDEs) that antagonize the OAS-RNase L pathway, and we report here that these proteins are furthermore conserved among additional coronavirus superfamily members, including lineage A betacoronaviruses and toroviruses, suggesting that they may play critical roles in pathogenesis. As there are no licensed vaccines or effective antivirals against human coronaviruses and few against those infecting animals, identifying viral proteins contributing to virulence can inform therapeutic development. Thus, this work demonstrates that a potent antagonist of host antiviral defenses is encoded by multiple and diverse viruses within the family Coronaviridae, presenting a possible broad-spectrum therapeutic target.


2021 ◽  
Author(s):  
Yuming Li ◽  
Yingkang Jin ◽  
Lijun Kuang ◽  
Zhenhua Luo ◽  
Fang Li ◽  
...  

Middle East respiratory syndrome coronavirus (MERS-CoV) is a beta coronavirus that emerged in 2012, causing severe pneumonia and renal failure. MERS-CoV encodes five accessory proteins. Some of them have been shown to interfere with host antiviral immune response. However, the roles of protein 8b in innate immunity and viral virulence was rarely studied. Here, we introduced individual MERS-CoV accessory protein genes into the genome of an attenuated murine coronavirus (Mouse hepatitis virus, MHV), respectively and found accessory protein 8b could enhance viral replication in vivo and in vitro , and increase the lethality of infected mice. RNA-seq analysis revealed that protein 8b could significantly inhibit type I interferon production (IFN-I) and innate immune response in mice infected with MHV expressing protein 8b. We also found that MERS-CoV protein 8b could initiate from multiple internal methionine sites and at least three protein variants were identified. Residues 1-23 of protein 8b was demonstrated to be responsible for increased virulence in vivo . In addition, the inhibitory effect on IFN-I of protein 8b might not contribute to its virulence enhancement as aa1-23 deletion did not affect IFN-I production in vitro and in vivo . Next, we also found that protein 8b was localized to the endoplasmic reticulum (ER)/Golgi membrane in infected cells, which was disrupted by C-terminal region aa 88-112 deletion. This study will provide new insight into the pathogenesis of MERS-CoV infection. IMPORTANCE Multiple coronaviruses (CoV) cause severe respiratory infections and become global public health threats such as SARS-CoV, MERS-CoV, and SARS-CoV-2. Each coronavirus contains different numbers of accessory proteins which show high variability among different CoVs. Accessory proteins are demonstrated to play essential roles in pathogenesis of CoVs. MERS-CoV contains 5 accessory proteins (protein 3, 4a, 4b, 5, 8b), and deletion of all four accessory proteins (protein 3, 4a, 4b, 5), significantly affects MERS-CoV replication and pathogenesis. However, whether ORF8b also regulates MERS-CoV infection is unknown. Here, we constructed mouse hepatitis virus (MHV) recombinant virus expressing MERS-CoV protein 8b and demonstrated protein 8b could significantly enhance the virulence of MHV, which is mediated by N-terminal domain of protein 8b. This study will shed light on the understanding of pathogenesis of MERS-CoV infection.


Author(s):  
N Padayachee ◽  
M Milne ◽  
N Schellack

Azithromycin is a second-generation macrolide that was developed in the early 1980s as a semi-synthetic derivative of erythromycin. This broad-spectrum antibiotic is known for its activity against some Gram-negative organisms such as H. influenza. Azithromycin is similar to other macrolides, however, it also has the ability to inhibit quorum sensing and the formation of biofilm. Azithromycin has been beneficial in the treatment of influenza and Middle East respiratory syndrome coronavirus (MERS-CoV) and recently has shown to be effective against severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) when used in combination with hydroxychloroquine or chloroquine. The side-effect that needs to be monitored carefully is the risk of cardiotoxicity when azithromycin is combined with chloroquine or hydroxychloroquine.


2020 ◽  
Vol 12 (2) ◽  
pp. 156-157
Author(s):  
Mohammad Mostafa Ansari Ramandi ◽  
Mohammadreza Baay ◽  
Nasim Naderi

The disaster due to the novel coronavirus disease 2019 (COVID-19) around the world has made investigators enthusiastic about working on different aspects of COVID-19. However, although the pandemic of COVID-19 has not yet ended, it seems that COVID-19 compared to the other coronavirus infections (the Middle East Respiratory Syndrome [MERS] and Severe Acute Respiratory Syndrome [SARS]) is more likely to target the heart. Comparing the previous presentations of the coronavirus family and the recent cardiovascular manifestations of COVID-19 can also help in predicting possible future challenges and taking measures to tackle these issues.


Batoboh ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
Reza Kusuma Setyansah

Coronavirus merupakan keluarga besar virus yang menyebabkan penyakit pada manusia, biasanya menyebabkan penyakit infeksi saluran pernapasan, mulai flu biasa hingga penyakit yang serius seperti Middle East Respiratory Syndrome (MERS) dan Sindrom Pernafasan Akut Berat/ Severe Acute Respiratory Syndrome (SARS). Coronavirus jenis baru yang ditemukan pada manusia sejak kejadian luar biasa muncul di Wuhan Cina, pada Desember 2019, kemudian diberi nama Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV2), dan menyebabkan penyakit Coronavirus Disease-2019 (COVID-19). Salah satu cara gampang melakukan pencegahan terhadap penyebaran virus ini adalah dengan menggunakan Handsanitizer alami. Menurut Organisasi Kesehatan Dunia (WHO), Handsanitizer alami harus mengandung setidaknya 60% alkohol untuk bekerja secara efektif. Selain handsanitizer, dengan melalukan metode penyemprotan disenfektan menggunakan cairan disenfektan. Disenfektan merupakan bahan kimia yang berguna untuk mencegah pertumbuhan bakteri ataupun jasad renik pada permukaan benda mati. Pelaksanaan pengabdian kepada masyarakat mengadakan penyaluran handsanitizer dan sabun cuci tangan alami serta penyemprotan disenfektan di desa Ngale sebagai upaya pencegahan Covid-19. Metode dalam pelaksanaan kegiatan ini yaitu wawancara dan diskusi bersama kepala desa Ngale. Kegiatan ini diharapkan mampu menumbuhkan kesadaran pada masyarakat akan pentingnya menjaga kebersihan, salah satunya menjaga kebersihan tangan serta dapat memutus mata rantai penyebaran Covid-19 di desa Ngale Kec Pilangkenceng Kab Madiun.


2020 ◽  
Vol 1 (1) ◽  
pp. 1-4
Author(s):  
Richard Avoi ◽  
Syed Sharizman Syed Abdul Rahim ◽  
Mohammad Saffree Jeffree ◽  
Visweswara Rao Pasupuleti

  Since the Coronavirus disease 2019 (COVID-19) pandemic unfolded in China (Huang et al., 2020) back in December 2019, thus far, more than five million people were infected with the virus and 333,401 death were recorded worldwide (WHO, 2020b). The exponential increase in number shows that COVID-19 spreads faster compared to Severe Acute Respiratory Syndrome (SARS) or Middle East Respiratory Syndrome (MERS). A study (Zou et al., 2020) has shown that high viral loads of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are detected in symptomatic patients soon after the onset of symptoms, wherein the load content is higher in their nose than in their throat. Furthermore, the same study has revealed similar viral loads between symptomatic and asymptomatic patients. Therefore, these findings may suggest the possibility of COVID-19 transmission earlier before the onset of symptoms itself. In the early stages of the pandemic, the control measures carried out have focused on screening of symptomatic person; at the time, the whole world thought that the spread of SARS-Cov-2 would only occur through symptomatic person-to-person transmission. In comparison, transmission in SARS would happen after the onset of illness, whereby the viral loads in the respiratory tract peaked around ten days after the development of symptoms by patients (Peiris et al., 2003). However, case detection for SARS (i.e. screening of symptomatic persons) will be grossly inadequate for the current COVID-19 pandemic, thus requiring different strategies to detect those infected with SARS-CoV-2 before they develop the symptoms.


2020 ◽  
Vol 7 (1) ◽  
pp. 69-77
Author(s):  
Aldonna Maria Susngi ◽  
◽  
Clara Ermine Sawian

The novel severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), the causative agent of Coronavirus disease 2019 (COVID-19) is a β-coronavirus, which also includes the highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome Coronavirus (MERS-CoV). Emerging in December 2019 from Wuhan, China, it has spread worldwide resulting in a pandemic that has not ended till date. This review highlights some of the key features of the virology of SARS-CoV-2.


2020 ◽  
Vol 144 (8) ◽  
pp. 920-928 ◽  
Author(s):  
David A. Schwartz ◽  
Amareen Dhaliwal

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the agent of coronavirus disease 2019 (COVID-19), is similar to 2 other coronaviruses, SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), in causing life-threatening maternal respiratory infections and systemic complications. Because of global concern for potential intrauterine transmission of SARS-CoV-2 from pregnant women to their infants, this report analyzes the effects on pregnancy of infections caused by SARS-CoV-2 and other respiratory RNA viruses, and examines the frequency of maternal-fetal transmission with SARS-CoV-2, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), influenza, respiratory syncytial virus (RSV), parainfluenza (HPIV), and metapneumovirus (hMPV). There have been no confirmed cases of intrauterine transmission reported with SARS-CoV-2 or any other coronaviruses—SARS and MERS. Influenza virus, despite causing approximately 1 billion annual infections globally, has only a few cases of confirmed or suspected intrauterine fetal infections reported. Respiratory syncytial virus is an unusual cause of illness among pregnant women, and with the exception of 1 premature infant with congenital pneumonia, no other cases of maternal-fetal infection are described. Parainfluenza virus and hMPV can produce symptomatic maternal infections but do not cause intrauterine fetal infection. In summary, it appears that the absence thus far of maternal-fetal transmission of the SARS-CoV-2 virus during the COVID-19 pandemic is similar to other coronaviruses, and is also consistent with the extreme rarity of suggested or confirmed cases of intrauterine transmission of other respiratory RNA viruses. This observation has important consequences for pregnant women because it appears that if intrauterine transmission of SARS-CoV-2 does eventually occur, it will be a rare event. Potential mechanisms of fetal protection from maternal viral infections are also discussed.


2020 ◽  
Vol 214 (5) ◽  
pp. 1078-1082 ◽  
Author(s):  
Melina Hosseiny ◽  
Soheil Kooraki ◽  
Ali Gholamrezanezhad ◽  
Sravanthi Reddy ◽  
Lee Myers

Author(s):  
Maoti Wei ◽  
Ning Yang ◽  
Fenghua Wang ◽  
Guoping Zhao ◽  
Hongwei Gao ◽  
...  

ABSTRACT In December, 2019, an infectious outbreak of unknown cause occurred in Wuhan, which attracted intense attention. Shortly after the virus was identified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the epidemic of coronavirus disease 2019 (COVID-19) broke out, and an information storm occurred. At that time, 2 important aspects, that is, the stages of spread and the components of the epidemic, were unclear. Answers to the questions (1) what are the sources, (2) how do infections occur, and (3) who will be affected should be clarified as the outbreak continues to evolve. Furthermore, components of the epidemic and the stages of spread should be explored and discussed. Based on information of SARS, Middle East respiratory syndrome (MERS), and COVID-19, the components of the epidemic (the sources, the routes of infection, and the susceptible population) will be discussed, as well as the role of natural and social factors involved. Epidemiologic characteristics of patients will be traced based on current information.


Sign in / Sign up

Export Citation Format

Share Document