scholarly journals In VitroSynergy of Colistin Combinations against Colistin-Resistant Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae Isolates

2012 ◽  
Vol 56 (9) ◽  
pp. 4856-4861 ◽  
Author(s):  
Céline Vidaillac ◽  
Lothaire Benichou ◽  
Raphaël E. Duval

ABSTRACTColistin resistance, although uncommon, is increasingly being reported among Gram-negative clinical pathogens, and an understanding of its impact on the activity of antimicrobials is now evolving. We evaluated the potential for synergy of colistin plus trimethoprim, trimethoprim-sulfamethoxazole (1/19 ratio), or vancomycin against 12 isolates ofAcinetobacter baumannii(n= 4),Pseudomonas aeruginosa(n= 4), andKlebsiella pneumoniae(n= 4). The strains included six multidrug-resistant clinical isolates,K. pneumoniaeATCC 700603,A. baumanniiATCC 19606,P. aeruginosaATCC 27853, and their colistin-resistant derivatives (KPm1, ABm1, and PAm1, respectively). Antimicrobial susceptibilities were assessed by broth microdilution and population analysis profiles. The potential for synergy of colistin combinations was evaluated using a checkerboard assay, as well as static time-kill experiments at 0.5× and 0.25× MIC. The MIC ranges of vancomycin, trimethoprim, and trimethoprim-sulfamethoxazole (1/19) were ≥128, 4 to ≥128, and 2/38 to >128/2,432 μg/ml, respectively. Colistin resistance demonstrated little impact on vancomycin, trimethoprim, or trimethoprim-sulfamethoxazole MIC values. Isolates with subpopulations heterogeneously resistant to colistin were observed to various degrees in all tested isolates. In time-kill assays, all tested combinations were synergistic against KPm1 at 0.25× MIC and 0.5× MIC and ABm1 and PAm1 at 0.5× MIC. In contrast, none of the tested combinations demonstrated synergy against any colistin-susceptibleP. aeruginosaisolates and clinical strains ofK. pneumoniaeisolates. Only colistin plus trimethoprim or trimethoprim-sulfamethoxazole was synergistic and bactericidal at 0.5× MIC againstK. pneumoniaeATCC 700603. Colistin resistance seems to promote thein vitroactivity of unconventional colistin combinations. Additional experiments are warranted to understand the clinical significance of these observations.

2013 ◽  
Vol 57 (8) ◽  
pp. 3738-3745 ◽  
Author(s):  
Hee Ji Lee ◽  
Phillip J. Bergen ◽  
Jurgen B. Bulitta ◽  
Brian Tsuji ◽  
Alan Forrest ◽  
...  

ABSTRACTCombination therapy may be required for multidrug-resistant (MDR)Acinetobacter baumannii. This study systematically investigated bacterial killing and emergence of colistin resistance with colistin and rifampin combinations against MDRA. baumannii. Studies were conducted over 72 h in anin vitropharmacokinetic (PK)/pharmacodynamic (PD) model at inocula of ∼106and ∼108CFU/ml using two MDR clinical isolates ofA. baumannii, FADDI-AB030 (colistin susceptible) and FADDI-AB156 (colistin resistant). Three combination regimens achieving clinically relevant concentrations (constant colistin concentration of 0.5, 2, or 5 mg/liter and a rifampin maximum concentration [Cmax] of 5 mg/liter every 24 hours; half-life, 3 h) were investigated. Microbiological response was measured by serial bacterial counts. Population analysis profiles assessed emergence of colistin resistance. Against both isolates, combinations resulted in substantially greater killing at the low inoculum; combinations containing 2 and 5 mg/liter colistin increased killing at the high inoculum. Combinations were additive or synergistic at 6, 24, 48, and 72 h with all colistin concentrations against FADDI-AB030 and FADDI-AB156 in, respectively, 8 and 11 of 12 cases (i.e., all 3 combinations) at the 106-CFU/ml inoculum and 8 and 7 of 8 cases with the 2- and 5-mg/liter colistin regimens at the 108-CFU/ml inoculum. For FADDI-AB156, killing by the combination was ∼2.5 to 7.5 and ∼2.5 to 5 log10CFU/ml greater at the low inoculum (all colistin concentrations) and high inoculum (2 and 5 mg/liter colistin), respectively. Emergence of colistin-resistant subpopulations was completely suppressed in the colistin-susceptible isolate with all combinations at both inocula. Our study provides important information for optimizing colistin-rifampin combinations against colistin-susceptible and -resistant MDRA. baumannii.


2019 ◽  
Vol 63 (5) ◽  
Author(s):  
Bartolome Moya ◽  
Isabel M. Barcelo ◽  
Gabriel Cabot ◽  
Gabriel Torrens ◽  
Snehal Palwe ◽  
...  

ABSTRACT Zidebactam and WCK 5153 are novel bicyclo-acyl hydrazide (BCH) agents that have previously been shown to act as β-lactam enhancer (BLE) antibiotics in Pseudomonas aeruginosa and Acinetobacter baumannii. The objectives of this work were to identify the molecular targets of these BCHs in Klebsiella pneumoniae and to investigate their potential BLE activity for cefepime and aztreonam against metallo-β-lactamase (MBL)-producing strains in vitro and in vivo. Penicillin binding protein (PBP) binding profiles were determined by Bocillin FL assay, and 50% inhibitory concentrations (IC50s) were determined using ImageQuant TL software. MICs and kill kinetics for zidebactam, WCK 5153, and cefepime or aztreonam, alone and in combination, were determined against clinical K. pneumoniae isolates producing MBLs VIM-1 or NDM-1 (plus ESBLs and class C β-lactamases) to assess the in vitro enhancer effect of BCH compounds in conjunction with β-lactams. Additionally, murine systemic and thigh infection studies were conducted to evaluate BLE effects in vivo. Zidebactam and WCK 5153 showed specific, high PBP2 affinity in K. pneumoniae. The MICs of BLEs were >64 μg/ml for all MBL-producing strains. Time-kill studies showed that a combination of these BLEs with either cefepime or aztreonam provided 1 to >3 log10 kill against MBL-producing K. pneumoniae strains. Furthermore, the bactericidal synergy observed for these BLE–β-lactam combinations translated well into in vivo efficacy even in the absence of MBL inhibition by BLEs, a characteristic feature of the β-lactam enhancer mechanism of action. Zidebactam and WCK 5153 are potent PBP2 inhibitors and display in vitro and in vivo BLE effects against multidrug-resistant (MDR) K. pneumoniae clinical isolates producing MBLs.


2012 ◽  
Vol 56 (10) ◽  
pp. 5103-5112 ◽  
Author(s):  
Zakuan Z. Deris ◽  
Heidi H. Yu ◽  
Kathryn Davis ◽  
Rachel L. Soon ◽  
Jovan Jacob ◽  
...  

ABSTRACTMultidrug-resistant (MDR)Klebsiella pneumoniaemay require combination therapy. We systematically investigated bacterial killing with colistin and doripenem mono- and combination therapy against MDRK. pneumoniaeand emergence of colistin resistance. A one-compartmentin vitropharmacokinetic/pharmacodynamic model was employed over a 72-h period with two inocula (∼106and ∼108CFU/ml); a colistin-heteroresistant reference strain (ATCC 13883) and three clinical isolates (colistin-susceptible FADDI-KP032 [doripenem resistant], colistin-heteroresistant FADDI-KP033, and colistin-resistant FADDI-KP035) were included. Four combinations utilizing clinically achievable concentrations were investigated. Microbiological responses were examined by determining log changes and population analysis profiles (for emergence of colistin resistance) over 72 h. Against colistin-susceptible and -heteroresistant isolates, combinations of colistin (constant concentration regimens of 0.5 or 2 mg/liter) plus doripenem (steady-state peak concentration [Cmax] of 2.5 or 25 mg/liter over 8 h; half-life, 1.5 h) generally resulted in substantial improvements in bacterial killing at both inocula. Combinations were additive or synergistic against ATCC 13883, FADDI-KP032, and FADDI-KP033 in 9, 9, and 14 of 16 cases (4 combinations at 6, 24, 48, and 72 h) at the 106-CFU/ml inoculum and 14, 11, and 12 of 16 cases at the 108-CFU/ml inoculum, respectively. Combinations at the highest dosage regimens resulted in undetectable bacterial counts at 72 h in 5 of 8 cases (4 isolates at 2 inocula). Emergence of colistin-resistant subpopulations in colistin-susceptible and -heteroresistant isolates was virtually eliminated with combination therapy. Against the colistin-resistant isolate, colistin at 2 mg/liter plus doripenem (Cmax, 25 mg/liter) at the low inoculum improved bacterial killing. This investigation provides important information for optimization of colistin-doripenem combinations.


2015 ◽  
Vol 59 (4) ◽  
pp. 2280-2285 ◽  
Author(s):  
Robert K. Flamm ◽  
Paul R. Rhomberg ◽  
Ronald N. Jones ◽  
David J. Farrell

ABSTRACTRX-P873 is a novel antibiotic from the pyrrolocytosine series which exhibits high binding affinity for the bacterial ribosome and broad-spectrum antibiotic properties. The pyrrolocytosines have shownin vitroactivity against multidrug-resistant Gram-negative and Gram-positive strains of bacteria known to cause complicated urinary tract, skin, and lung infections, as well as sepsis.Enterobacteriaceae(657),Pseudomonas aeruginosa(200), andAcinetobacter baumannii(202) isolates from North America and Europe collected in 2012 as part of a worldwide surveillance program were testedin vitroby broth microdilution using Clinical and Laboratory Standards Institute (CLSI) methodology. RX-P873 (MIC90, 0.5 μg/ml) was >32-fold more active than ceftazidime and inhibited 97.1% and 99.5% ofEnterobacteriaceaeisolates at MIC values of ≤1 and ≤4 μg/ml, respectively. There were only three isolates with an MIC value of >4 μg/ml (all were indole-positiveProtea). RX-P873 (MIC50/90, 2/4 μg/ml) was highly active againstPseudomonas aeruginosaisolates, including isolates which were nonsusceptible to ceftazidime or meropenem. RX-P873 was 2-fold less active againstP. aeruginosathan tobramycin (MIC90, 2 μg/ml; 91.0% susceptible) and colistin (MIC90, 2 μg/ml; 99.5% susceptible) and 2-fold more potent than amikacin (MIC90, 8 μg/ml; 93.5% susceptible) and meropenem (MIC90, 8 μg/ml; 76.0% susceptible). RX-P873, the most active agent againstAcinetobacter baumannii(MIC90, 1 μg/ml), was 2-fold more active than colistin (MIC90, 2 μg/ml; 97.0% susceptible) and 4-fold more active than tigecycline (MIC90, 4 μg/ml). This novel agent merits further exploration of its potential against multidrug-resistant Gram-negative bacteria.


2011 ◽  
Vol 55 (11) ◽  
pp. 5134-5142 ◽  
Author(s):  
Phillip J. Bergen ◽  
Alan Forrest ◽  
Jürgen B. Bulitta ◽  
Brian T. Tsuji ◽  
Hanna E. Sidjabat ◽  
...  

ABSTRACTThe use of combination antibiotic therapy may be beneficial against rapidly emerging resistance inPseudomonas aeruginosa. The aim of this study was to systematically investigatein vitrobacterial killing and resistance emergence with colistin alone and in combination with imipenem against multidrug-resistant (MDR)P. aeruginosa. Time-kill studies were conducted over 48 h using 5 clinical isolates and ATCC 27853 at two inocula (∼106and ∼108CFU/ml); MDR, non-MDR, and colistin-heteroresistant and -resistant strains were included. Nine colistin-imipenem combinations were investigated. Microbiological response was examined by log changes at 6, 24, and 48 h. Colistin combined with imipenem at clinically relevant concentrations increased the levels of killing of MDR and colistin-heteroresistant isolates at both inocula. Substantial improvements in activity with combinations were observed across 48 h with all colistin concentrations at the low inoculum and with colistin at 4× and 16× MIC (or 4 and 32 mg/liter) at the high inoculum. Combinations were additive or synergistic against imipenem-resistant isolates (MICs, 16 and 32 mg/liter) at the 106-CFU inoculum in 9, 11, and 12 of 18 cases (i.e., 9 combinations across 2 isolates) at 6, 24, and 48 h, respectively, and against the same isolates at the 108-CFU inoculum in 11, 7, and 8 cases, respectively. Against a colistin-resistant strain (MIC, 128 mg/liter), combinations were additive or synergistic in 9 and 8 of 9 cases at 24 h at the 106- and 108-CFU inocula, respectively, and in 5 and 7 cases at 48 h. This systematic study provides important information for optimization of colistin-imipenem combinations targeting both colistin-susceptible and colistin-resistant subpopulations.


2011 ◽  
Vol 55 (7) ◽  
pp. 3603-3608 ◽  
Author(s):  
G. A. Denys ◽  
J. C. Davis ◽  
P. D. O'Hanley ◽  
J. T. Stephens

ABSTRACTWe evaluated thein vitroandin vivoactivity of a novel topical myeloperoxidase-mediated antimicrobial, E-101 solution, against 5 multidrug-resistantAcinetobacter baumanniiisolates recovered from wounded American soldiers. Time-kill studies demonstrated rapid bactericidal activity against allA. baumanniistrains tested in the presence of 3% blood. Thein vitrobactericidal activity of E-101 solution againstA. baumanniistrains was confirmed in a full-thickness excision rat model. Additionalin vivostudies appear warranted.


mSphere ◽  
2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Anna Giammanco ◽  
Cinzia Calà ◽  
Teresa Fasciana ◽  
Michael J. Dowzicky

ABSTRACT Multidrug resistance among bacterial pathogens is an ongoing global problem and renders antimicrobial agents ineffective at treating bacterial infections. In the health care setting, infections caused by multidrug-resistant (MDR) Gram-negative bacteria can cause increased mortality, longer hospital stays, and higher treatments costs. The aim of the Tigecycline Evaluation and Surveillance Trial (TEST) is to assess the in vitro antimicrobial activities of tigecycline and other contemporary agents against clinically relevant pathogens. This paper presents antimicrobial activity data from the TEST study between 2004 and 2014 and examines global rates of MDR Gram-negative isolates, including Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacteriaceae, during this time. Our results show that tigecycline retained in vitro activity against many MDR Gram-negative pathogens over the study period, while rates of MDR A. baumannii increased globally. Using these findings, we hope to highlight the current status of multidrug resistance in medical facilities worldwide. Multidrug-resistant (MDR) Gram-negative organisms are a burden on the global health care system. The Tigecycline Evaluation and Surveillance Trial (TEST) is an ongoing global study designed to monitor the in vitro activities of tigecycline and a panel of marketed antimicrobials against a range of clinically significant pathogens. In this study, in vitro data are presented for MDR Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter aerogenes, and Enterobacter cloacae isolates collected from 2004 to 2014. In total, 13% (21,967/170,759) of isolates displayed multidrug resistance globally, with the highest rates recorded among A. baumannii (overall rate, 44% [8,294/18,741], increasing from 23% [309/1,323] in 2004 to 63% [447/712] in 2014). Other multidrug resistance rates ranged from 2.5% for K. oxytoca (203/8,000) to 12% for P. aeruginosa and K. pneumoniae (3,951/32,786 and 3,895/32,888, respectively), and rates among these pathogens remained stable during the study period. Against MDR E. coli, Klebsiella spp., and E. aerogenes, the lowest rates of resistance were to tigecycline (0.2%, 6%, and 12%, respectively), and the lowest MIC90 value against A. baumannii was observed for tigecycline (2 mg/liter; MIC range, ≤0.008 to ≥32 mg/liter). The only significant change in resistance to tigecycline during the study period was for MDR E. coli (P < 0.01), among which eight resistant isolates were identified globally from 2009 to 2013. In summary, these results show that tigecycline retained in vitro activity against the majority of MDR Gram-negative organisms presented here, but the rising rates of MDR A. baumannii highlight the need for the continued monitoring of global multidrug resistance. IMPORTANCE Multidrug resistance among bacterial pathogens is an ongoing global problem and renders antimicrobial agents ineffective at treating bacterial infections. In the health care setting, infections caused by multidrug-resistant (MDR) Gram-negative bacteria can cause increased mortality, longer hospital stays, and higher treatments costs. The aim of the Tigecycline Evaluation and Surveillance Trial (TEST) is to assess the in vitro antimicrobial activities of tigecycline and other contemporary agents against clinically relevant pathogens. This paper presents antimicrobial activity data from the TEST study between 2004 and 2014 and examines global rates of MDR Gram-negative isolates, including Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacteriaceae, during this time. Our results show that tigecycline retained in vitro activity against many MDR Gram-negative pathogens over the study period, while rates of MDR A. baumannii increased globally. Using these findings, we hope to highlight the current status of multidrug resistance in medical facilities worldwide.


2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Patrick Grohs ◽  
Gary Taieb ◽  
Philippe Morand ◽  
Iheb Kaibi ◽  
Isabelle Podglajen ◽  
...  

ABSTRACT Ceftolozane-tazobactam was tested against 58 multidrug-resistant nonfermenting Gram-negative bacilli (35 Pseudomonas aeruginosa, 11 Achromobacter xylosoxydans, and 12 Stenotrophomonas maltophilia isolates) isolated from cystic fibrosis patients and was compared to ceftolozane alone, ceftazidime, meropenem, and piperacillin-tazobactam. Ceftolozane-tazobactam was the most active agent against P. aeruginosa but was inactive against A. xylosoxydans and S. maltophilia. In time-kill experiments, ceftolozane-tazobactam had complete bactericidal activity against 2/6 clinical isolates (33%).


2019 ◽  
Vol 8 (9) ◽  
pp. 1444 ◽  
Author(s):  
Hae Suk Cheong ◽  
So Yeon Kim ◽  
Yu Mi Wi ◽  
Kyong Ran Peck ◽  
Kwan Soo Ko

Heteroresistance may pose a threat to the prognosis of patients following colistin treatment. We investigated colistin heteroresistance in Klebsiella pneumoniae isolates from South Korea. Among 252 K. pneumoniae blood isolates, 231 were susceptible to polymyxins. Heteroresistance to colistin was determined using population analysis profiles, disk diffusion assays, and E-test strip tests for the susceptible isolates. As a result, we identified three colistin-heteroresistant K. pneumoniae isolates belonging to separate clones (ST11, ST461, and ST3217) by multilocus sequence typing analysis. Two colistin-resistant subpopulations were selected from each heteroresistant isolate in either disk diffusion testing or E-testing. Two resistant subpopulations from the same isolate exhibited different amino acid substitutions in the two-component regulatory systems PmrAB and PhoPQ. An in vitro time–kill assay showed that meropenem combined with colistin had a 1× minimum inhibitory concentration bactericidal effect against a multidrug-resistant, colistin-heteroresistant isolate.


2015 ◽  
Vol 59 (8) ◽  
pp. 4544-4550 ◽  
Author(s):  
Lynette M. Phee ◽  
Jonathan W. Betts ◽  
Binutha Bharathan ◽  
David W. Wareham

ABSTRACTThe spread of multidrug-resistantAcinetobacter baumannii(MDRAB) has led to the renaissance of colistin (COL), often the only agent to which MDRAB remains susceptible. Effective therapy with COL is beset with problems due to unpredictable pharmacokinetics, toxicity, and the rapid selection of resistance. Here, we describe a potent synergistic interaction when COL was combined with fusidic acid (FD) againstA. baumannii. Synergyin vitrowas assessed against 11 MDRAB isolates using disc diffusion, checkerboard methodology (fractional inhibitory concentration index [FICI] of ≤ 0.5, susceptibility breakpoint index [SBPI] of >2), and time-kill methodology (≥2 log10CFU/ml reduction). The ability of FD to limit the emergence of COL resistance was assessed in the presence and absence of each drug alone and in combination. Synergy was demonstrated against all strains, with an average FICI and SBPI of 0.064 and 78.85, respectively. In time-kill assays, COL-FD was synergistic and rapidly bactericidal, including against COL-resistant strains. Fusidic acid prevented the emergence of COL resistance, which was readily selected with COL alone. This is the first description of a novel COL-FD regimen for the treatment of MDRAB. The combination was effective at low concentrations, which should be therapeutically achievable while limiting toxicity. Further studies are warranted to determine the mechanism underlying the interaction and the suitability of COL-FD as an unorthodox therapy for the treatment of multidrug-resistant Gram-negative infections.


Sign in / Sign up

Export Citation Format

Share Document