scholarly journals Cryptococcus neoformans-Cryptococcus gattii Species Complex: an International Study of Wild-Type Susceptibility Endpoint Distributions and Epidemiological Cutoff Values for Amphotericin B and Flucytosine

2012 ◽  
Vol 56 (6) ◽  
pp. 3107-3113 ◽  
Author(s):  
A. Espinel-Ingroff ◽  
A. Chowdhary ◽  
M. Cuenca-Estrella ◽  
A. Fothergill ◽  
J. Fuller ◽  
...  

ABSTRACTClinical breakpoints (CBPs) are not available for theCryptococcus neoformans-Cryptococcus gattiispecies complex. MIC distributions were constructed for the wild type (WT) to establish epidemiologic cutoff values (ECVs) forC. neoformansandC. gattiiversus amphotericin B and flucytosine. A total of 3,590 amphotericin B and 3,045 flucytosine CLSI MICs forC. neoformans(including 1,002 VNI isolates and 8 to 39 VNII, VNIII, and VNIV isolates) and 985 and 853 MICs forC. gattii, respectively (including 42 to 259 VGI, VGII, VGIII, and VGIV isolates), were gathered in 9 to 16 (amphotericin B) and 8 to 13 (flucytosine) laboratories (Europe, United States, Australia, Brazil, Canada, India, and South Africa) and aggregated for the analyses. Additionally, 442 amphotericin B and 313 flucytosine MICs measured by using CLSI-YNB medium instead of CLSI-RPMI medium and 237 Etest amphotericin B MICs forC. neoformanswere evaluated. CLSI-RPMI ECVs for distributions originating in ≥3 laboratories (with the percentages of isolates for which MICs were less than or equal to ECVs given in parentheses) were as follows: for amphotericin B, 0.5 μg/ml forC. neoformansVNI (97.2%) andC. gattiiVGI and VGIIa (99.2 and 97.5%, respectively) and 1 μg/ml forC. neoformans(98.5%) andC. gattiinontyped (100%) and VGII (99.2%) isolates; for flucytosine, 4 μg/ml forC. gattiinontyped (96.4%) and VGI (95.7%) isolates, 8 μg/ml for VNI (96.6%) isolates, and 16 μg/ml forC. neoformansnontyped (98.6%) andC. gattiiVGII (97.1%) isolates. Other molecular types had apparent variations in MIC distributions, but the number of laboratories contributing data was too low to allow us to ascertain that the differences were due to factors other than assay variation. ECVs may aid in the detection of isolates with acquired resistance mechanisms.

2012 ◽  
Vol 56 (11) ◽  
pp. 5898-5906 ◽  
Author(s):  
A. Espinel-Ingroff ◽  
A. I. Aller ◽  
E. Canton ◽  
L. R. Castañón-Olivares ◽  
A. Chowdhary ◽  
...  

ABSTRACTEpidemiological cutoff values (ECVs) for theCryptococcus neoformans-Cryptococcus gattiispecies complex versus fluconazole, itraconazole, posaconazole, and voriconazole are not available. We established ECVs for these species and agents based on wild-type (WT) MIC distributions. A total of 2,985 to 5,733 CLSI MICs forC. neoformans(including isolates of molecular type VNI [MICs for 759 to 1,137 isolates] and VNII, VNIII, and VNIV [MICs for 24 to 57 isolates]) and 705 to 975 MICs forC. gattii(including 42 to 260 for VGI, VGII, VGIII, and VGIV isolates) were gathered in 15 to 24 laboratories (Europe, United States, Argentina, Australia, Brazil, Canada, Cuba, India, Mexico, and South Africa) and were aggregated for analysis. Additionally, 220 to 359 MICs measured using CLSI yeast nitrogen base (YNB) medium instead of CLSI RPMI medium forC. neoformanswere evaluated. CLSI RPMI medium ECVs for distributions originating from at least three laboratories, which included ≥95% of the modeled WT population, were as follows: fluconazole, 8 μg/ml (VNI,C. gattiinontyped, VGI, VGIIa, and VGIII), 16 μg/ml (C. neoformansnontyped, VNIII, and VGIV), and 32 μg/ml (VGII); itraconazole, 0.25 μg/ml (VNI), 0.5 μg/ml (C. neoformansandC. gattiinontyped and VGI to VGIII), and 1 μg/ml (VGIV); posaconazole, 0.25 μg/ml (C. neoformansnontyped and VNI) and 0.5 μg/ml (C. gattiinontyped and VGI); and voriconazole, 0.12 μg/ml (VNIV), 0.25 μg/ml (C. neoformansandC. gattiinontyped, VNI, VNIII, VGII, and VGIIa,), and 0.5 μg/ml (VGI). The number of laboratories contributing data for other molecular types was too low to ascertain that the differences were due to factors other than assay variation. In the absence of clinical breakpoints, our ECVs may aid in the detection of isolates with acquired resistance mechanisms and should be listed in the revised CLSI M27-A3 and CLSI M27-S3 documents.


2014 ◽  
Vol 59 (1) ◽  
pp. 666-668 ◽  
Author(s):  
A. Espinel-Ingroff ◽  
A. Chowdhary ◽  
G. M. Gonzalez ◽  
J. Guinea ◽  
F. Hagen ◽  
...  

ABSTRACTEpidemiological cutoff values (ECVs) of isavuconazole are not available forCryptococcusspp. The isavuconazole ECVs based on wild-type (WT) MIC distributions for 438Cryptococcus neoformansnongenotyped isolates, 870 isolates of genotype VNI, and 406Cryptococcus gattiiisolates from six laboratories and different geographical areas were 0.06, 0.12, and 0.25 μg/ml, respectively. These ECVs may aid in detecting non-WT isolates with reduced susceptibilities to isavuconazole.


2011 ◽  
Vol 55 (11) ◽  
pp. 5150-5154 ◽  
Author(s):  
A. Espinel-Ingroff ◽  
M. Cuenca-Estrella ◽  
A. Fothergill ◽  
J. Fuller ◽  
M. Ghannoum ◽  
...  

ABSTRACTAlthough clinical breakpoints have not been established for mold testing, epidemiological cutoff values (ECVs) are available forAspergillusspp. versus the triazoles and caspofungin. Wild-type (WT) MIC distributions (organisms in a species-drug combination with no acquired resistance mechanisms) were defined in order to establish ECVs for sixAspergillusspp. and amphotericin B. Two sets (CLSI/EUCAST broth microdilution) of available MICs were evaluated: those forA. fumigatus(3,988/833),A. flavus(793/194),A. nidulans(184/69),A. niger(673/140),A. terreus(545/266), andA. versicolor(135/22). Three sets of data were analyzed: (i) CLSI data gathered in eight independent laboratories in Canada, Europe, and the United States; (ii) EUCAST data from a single laboratory; and (iii) the combined CLSI and EUCAST data. ECVs, expressed in μg/ml, that captured 95%, 97.5%, and 99% of the modeled wild-type population (CLSI and combined data) were as follows: forA. fumigatus, 2, 2, and 4; forA. flavus, 2, 4, and 4; forA. nidulans, 4, 4, and 4; forA. niger, 2, 2, and 2; forA. terreus, 4, 4, and 8; and forA. versicolor, 2, 2, and 2. Similar to the case for the triazoles and caspofungin, amphotericin B ECVs may aid in the detection of strains with acquired mechanisms of resistance to this agent.


2015 ◽  
Vol 59 (3) ◽  
pp. 1745-1750 ◽  
Author(s):  
A. Espinel-Ingroff ◽  
A. Chakrabarti ◽  
A. Chowdhary ◽  
S. Cordoba ◽  
E. Dannaoui ◽  
...  

ABSTRACTClinical breakpoints (CBPs) have not been established for theMucoralesand any antifungal agent. In lieu of CBPs, epidemiologic cutoff values (ECVs) are proposed for amphotericin B, posaconazole, and itraconazole and fourMucoralesspecies. Wild-type (WT) MIC distributions (organisms in a species-drug combination with no detectable acquired resistance mechanisms) were defined with available pooled CLSI MICs from 14 laboratories (Argentina, Australia, Canada, Europe, India, Mexico, and the United States) as follows: 10Apophysomyces variabilis, 32Cunninghamella bertholletiae, 136Lichtheimia corymbifera, 10Mucor indicus, 123M. circinelloides, 19M. ramosissimus, 349Rhizopus arrhizus, 146R. microsporus, 33Rhizomucor pusillus, and 36Syncephalastrum racemosumisolates. CLSI broth microdilution MICs were aggregated for the analyses. ECVs comprising ≥95% and ≥97.5% of the modeled populations were as follows: amphotericin B ECVs forL. corymbiferawere 1 and 2 μg/ml, those forM. circinelloideswere 1 and 2 μg/ml, those forR. arrhizuswere 2 and 4 μg/ml, and those forR. microsporuswere 2 and 2 μg/ml, respectively; posaconazole ECVs forL. corymbiferawere 1 and 2, those forM. circinelloideswere 4 and 4, those forR. arrhizuswere 1 and 2, and those forR. microsporuswere 1 and 2, respectively; both itraconazole ECVs forR. arrhizuswere 2 μg/ml. ECVs may aid in detecting emerging resistance or isolates with reduced susceptibility (non-WT MICs) to the agents evaluated.


2013 ◽  
Vol 58 (2) ◽  
pp. 916-922 ◽  
Author(s):  
M. A. Pfaller ◽  
A. Espinel-Ingroff ◽  
B. Bustamante ◽  
E. Canton ◽  
D. J. Diekema ◽  
...  

ABSTRACTSince epidemiological cutoff values (ECVs) using CLSI MICs from multiple laboratories are not available forCandidaspp. and the echinocandins, we established ECVs for anidulafungin and micafungin on the basis of wild-type (WT) MIC distributions (for organisms in a species-drug combination with no detectable acquired resistance mechanisms) for 8,210Candida albicans, 3,102C. glabrata, 3,976C. parapsilosis, 2,042C. tropicalis, 617C. krusei, 258C. lusitaniae, 234C. guilliermondii, and 131C. dubliniensisisolates. CLSI broth microdilution MIC data gathered from 15 different laboratories in Canada, Europe, Mexico, Peru, and the United States were aggregated to statistically define ECVs. ECVs encompassing 97.5% of the statistically modeled population for anidulafungin and micafungin were, respectively, 0.12 and 0.03 μg/ml forC. albicans, 0.12 and 0.03 μg/ml forC. glabrata, 8 and 4 μg/ml forC. parapsilosis, 0.12 and 0.06 μg/ml forC. tropicalis, 0.25 and 0.25 μg/ml forC. krusei, 1 and 0.5 μg/ml forC. lusitaniae, 8 and 2 μg/ml forC. guilliermondii, and 0.12 and 0.12 μg/ml forC. dubliniensis. Previously reported single and multicenter ECVs defined in the present study were quite similar or within 1 2-fold dilution of each other. For a collection of 230 WT isolates (nofksmutations) and 51 isolates withfksmutations, the species-specific ECVs for anidulafungin and micafungin correctly classified 47 (92.2%) and 51 (100%) of thefksmutants, respectively, as non-WT strains. These ECVs may aid in detecting non-WT isolates with reduced susceptibility to anidulafungin and micafungin due tofksmutations.


2013 ◽  
Vol 57 (8) ◽  
pp. 3823-3828 ◽  
Author(s):  
A. Espinel-Ingroff ◽  
A. Chowdhary ◽  
G. M. Gonzalez ◽  
C. Lass-Flörl ◽  
E. Martin-Mazuelos ◽  
...  

ABSTRACTEpidemiological cutoff values (ECVs) were established for the new triazole isavuconazole andAspergillusspecies wild-type (WT) MIC distributions (organisms in a species-drug combination with no detectable acquired resistance mechanisms) that were defined with 855Aspergillus fumigatus, 444A. flavus, 106A. nidulans, 207A. niger, 384A. terreus, and 75A. versicolorspecies complex isolates; 22AspergillussectionUstiisolates were also included. CLSI broth microdilution MIC data gathered in Europe, India, Mexico, and the United States were aggregated to statistically define ECVs. ECVs were 1 μg/ml for theA. fumigatusspecies complex, 1 μg/ml for theA. flavusspecies complex, 0.25 μg/ml for theA. nidulansspecies complex, 4 μg/ml for theA. nigerspecies complex, 1 μg/ml for theA. terreusspecies complex, and 1 μg/ml for theA. versicolorspecies complex; due to the small number of isolates, an ECV was not proposed forAspergillussectionUsti. These ECVs may aid in detecting non-WT isolates with reduced susceptibility to isavuconazole due tocyp51A(anA. fumigatusspecies complex resistance mechanism among the triazoles) or other mutations.


2016 ◽  
Vol 61 (3) ◽  
Author(s):  
Gregory H. Tyson ◽  
Shaohua Zhao ◽  
Cong Li ◽  
Sherry Ayers ◽  
Jonathan L. Sabo ◽  
...  

ABSTRACT Whole-genome sequencing (WGS) has transformed our understanding of antimicrobial resistance, helping us to better identify and track the genetic mechanisms underlying phenotypic resistance. Previous studies have demonstrated high correlations between phenotypic resistance and the presence of known resistance determinants. However, there has never been a large-scale assessment of how well resistance genotypes correspond to specific MICs. We performed antimicrobial susceptibility testing and WGS of 1,738 nontyphoidal Salmonella strains to correlate over 20,000 MICs with resistance determinants. Using these data, we established what we term genotypic cutoff values (GCVs) for 13 antimicrobials against Salmonella. For the drugs we tested, we define a GCV as the highest MIC of isolates in a population devoid of known acquired resistance mechanisms. This definition of GCV is distinct from epidemiological cutoff values (ECVs or ECOFFs), which currently differentiate wild-type from non-wild-type strains based on MIC distributions alone without regard to genetic information. Due to the large number of isolates involved, we observed distinct MIC distributions for isolates with different resistance gene alleles, including for ciprofloxacin and tetracycline, suggesting the potential to predict MICs based on WGS data alone.


2011 ◽  
Vol 55 (6) ◽  
pp. 2855-2859 ◽  
Author(s):  
A. Espinel-Ingroff ◽  
A. Fothergill ◽  
J. Fuller ◽  
E. Johnson ◽  
T. Pelaez ◽  
...  

ABSTRACTClinical breakpoints have not been established for mold testing. Epidemiologic cutoff values (ECVs) are available for sixAspergillusspp. and the triazoles, but not for caspofungin. Wild-type (WT) minimal effective concentration (MEC) distributions (organisms in a species-drug combination with no acquired resistance mechanisms) were defined in order to establish ECVs for sixAspergillusspp. and caspofungin. The number of available isolates was as follows: 1,691A. fumigatus, 432A. flavus, 192A. nidulans, 440A. niger, 385A. terreus, and 75A. versicolorisolates. CLSI broth microdilution MEC data gathered in five independent laboratories in Canada, Europe, and the United States were aggregated for the analyses. ECVs expressed in μg/ml that captured 95% and 99% of the modeled wild-type population were forA. fumigatus0.5 and 1,A. flavus0.25 and 0.5,A. nidulans0.5 and 0.5,A. niger0.25 and 0.25,A. terreus0.25 and 0.5, andA. versicolor0.25 and 0.5. Although caspofungin ECVs are not designed to predict the outcome of therapy, they may aid in the detection of strains with reduced antifungal susceptibility to this agent and acquired resistance mechanisms.


2020 ◽  
Vol 69 (6) ◽  
pp. 830-837
Author(s):  
Raimunda Sâmia Nogueira Brilhante ◽  
José Alexandre Telmos Silva ◽  
Géssica dos Santos Araújo ◽  
Vandbergue Santos Pereira ◽  
Wilker Jose Perez Gotay ◽  
...  

Introduction. Cryptococcus species are pathogens commonly associated with cases of meningoencephalitis in individuals who are immunosuppressed due to AIDS. Aim. The aim was to evaluate the effects of the antiretroviral darunavir alone or associated with fluconazole, 5-flucytosine and amphotericin B against planktonic cells and biofilms of Cryptococcus species. Methodology. Susceptibility testing of darunavir and the common antifungals against 12 members of the Cryptococcus neoformans/Cryptococcus gattii species complex was evaluated by broth microdilution. The interaction between darunavir and antifungals against planktonic cells was tested by a checkerboard assay. The effects of darunavir against biofilm metabolic activity and biomass were evaluated by the XTT reduction assay and crystal violet staining, respectively. Results. Darunavir combined with amphotericin B showed a synergistic interaction against planktonic cells. No antagonistic interaction was observed between darunavir and the antifungals used. All Cryptococcus species strains were strong biofilm producers. Darunavir alone reduced biofilm metabolic activity and biomass when added during and after biofilm formation (P<0.05). The combination of darunavir with antifungals caused a significant reduction in biofilm metabolic activity and biomass when compared to darunavir alone (P<0.05). Conclusion. Darunavir presents antifungal activity against planktonic cells of Cryptococcus species and synergism with amphotericin B. In addition, darunavir led to reduced biofilm formation and showed activity against mature biofilms of Cryptococcus species. Activity of the antifungals against mature biofilms was enhanced in the presence of darunavir.


2018 ◽  
Vol 62 (9) ◽  
Author(s):  
Saad J. Taj-Aldeen ◽  
Husam Salah ◽  
Winder B. Perez ◽  
Muna Almaslamani ◽  
Mary Motyl ◽  
...  

ABSTRACT A total of 301 Candida bloodstream isolates collected from 289 patients over 5 years at a tertiary hospital in Qatar were evaluated. Out of all Candida infections, 53% were diagnosed in patients admitted to the intensive care units. Steady increases in non-albicans Candida species were reported from 2009 to 2014 (30.2% for Candida albicans versus 69.8% for the other Candida species). Etest antifungal susceptibility testing was performed on all recovered clinical isolates to determine echinocandin (micafungin and anidulafungin) and amphotericin B susceptibilities and assess non-wild-type (non-WT) strains (strains for which MICs were above the epidemiological cutoff values). DNA sequence analysis was performed on all isolates to assess the presence of FKS mutations, which confer echinocandin resistance in Candida species. A total of 3.9% of isolates (12/301) among strains of C. albicans and C. orthopsilosis contained FKS hot spot mutations, including heterozygous mutations in FKS1. For C. tropicalis, the Etest appeared to overestimate strains non-WT for micafungin, anidulafungin, and amphotericin B, as 14%, 11%, and 35% of strains, respectively, had values above the epidemiological cutoff value. However, no FKS mutations were identified in this species. For all other species, micafungin best reported the echinocandin non-WT strains relative to the FKS genotype, as anidulafungin tended to overestimate non-wild-type strains. Besides C. tropicalis, few strains were classified as non-WT for amphotericin B.


Sign in / Sign up

Export Citation Format

Share Document