scholarly journals Mapping the regions carrying the three contiguous antibiotic resistance genes aadE, sat4, and aphA-3 in the genomes of staphylococci.

1997 ◽  
Vol 41 (5) ◽  
pp. 1024-1032 ◽  
Author(s):  
A Derbise ◽  
S Aubert ◽  
N El Solh

Tn5405 (12 kb) is a staphylococcal composite transposon delimited by two inverted copies of IS1182, one of which contains IS1181. The internal part of this transposon carries three antibiotic resistance genes, aphA-3, aadE, and sat4, and three open reading frames (ORFs), orfx, orfy, and orfz, of unknown function. The dispersion of Tn5405 and the genes and ORFs included in this transposon were investigated in 50 epidemiologically unrelated staphylococci carrying aphA-3. Twenty-three maps, distinguishable by the presence or absence of the investigated genes or ORFs and/or by the sizes of the restriction fragments carrying them, were identified. Four isolates carried Tn5405, and 15 other isolates contained a Tn5405-related element. IS1182 was not detected in the aphA-3 regions mapped in 31 isolates which carried the following combinations: orfx, orfy, aadE, sat4, and aphA-3 +/- orfz; orfy, aadE, sat4, and aphA-3 +/- orfz; and aadE, sat4, aphA-3, and orfz. In all isolates, the genes and ORFs investigated were in relative positions similar to those in Tn5405. Thus, the internal part of Tn5405 appeared to be partially conserved with the maintenance, in all of the isolates, of at least the three antibiotic resistance genes.

2020 ◽  
Vol 18 (4) ◽  
pp. 477-493
Author(s):  
Johannes Cornelius Jacobus Fourie ◽  
Cornelius Carlos Bezuidenhout ◽  
Tomasz Janusz Sanko ◽  
Charlotte Mienie ◽  
Rasheed Adeleke

Abstract Until recently, research has focused on Clostridium perfringens in clinical settings without considering environmental isolates. In this study, environmental genomes were used to investigate possible antibiotic resistance and the presence of virulence traits in C. perfringens strains from raw surface water. In silico assembly of three C. perfringens strains, DNA generated almost complete genomes setting their length ranging from 3.4 to 3.6 Mbp with GC content of 28.18%. An average of 3,175 open reading frames was identified, with the majority associated with carbohydrate and protein metabolisms. The genomes harboured several antibiotic resistance genes for glycopeptides, macrolide–lincosamide–streptogramin B, β-lactam, trimethoprim, tetracycline and aminoglycosides and also the presence of several genes encoding for polypeptides and multidrug resistance efflux pumps and 35 virulence genes. Some of these encode for haemolysins, sialidase, hyaluronidase, collagenase, perfringolysin O and phospholipase C. All three genomes contained sequences indicating phage, antibiotic resistance and pathogenic islands integration sites. A genomic comparison of these three strains confirmed high similarity and shared core genes with clinical C. perfringens strains, highlighting their health security risks. This study provides a genomic insight into the potential pathogenicity of C. perfringens present in the environment and emphasises the importance of monitoring this niche in the future.


GigaScience ◽  
2020 ◽  
Vol 9 (5) ◽  
Author(s):  
Rafael R C Cuadrat ◽  
Maria Sorokina ◽  
Bruno G Andrade ◽  
Tobias Goris ◽  
Alberto M R Dávila

Abstract Background The rise of antibiotic resistance (AR) in clinical settings is of great concern. Therefore, the understanding of AR mechanisms, evolution, and global distribution is a priority for patient survival. Despite all efforts in the elucidation of AR mechanisms in clinical strains, little is known about its prevalence and evolution in environmental microorganisms. We used 293 metagenomic samples from the TARA Oceans project to detect and quantify environmental antibiotic resistance genes (ARGs) using machine learning tools. Results After manual curation of ARGs, their abundance and distribution in the global ocean are presented. Additionally, the potential of horizontal ARG transfer by plasmids and their correlation with environmental and geographical parameters is shown. A total of 99,205 environmental open reading frames (ORFs) were classified as 1 of 560 different ARGs conferring resistance to 26 antibiotic classes. We found 24,567 ORFs in putative plasmid sequences, suggesting the importance of mobile genetic elements in the dynamics of environmental ARG transmission. Moreover, 4,804 contigs with >=2 putative ARGs were found, including 2 plasmid-like contigs with 5 different ARGs, highlighting the potential presence of multi-resistant microorganisms in the natural ocean environment. Finally, we identified ARGs conferring resistance to some of the most relevant clinical antibiotics, revealing the presence of 15 ARGs similar to mobilized colistin resistance genes (mcr) with high abundance on polar biomes. Of these, 5 are assigned to Psychrobacter, a genus including opportunistic human pathogens. Conclusions This study uncovers the diversity and abundance of ARGs in the global ocean metagenome. Our results are available on Zenodo in MySQL database dump format, and all the code used for the analyses, including a Jupyter notebook js avaliable on Github. We also developed a dashboard web application (http://www.resistomedb.com) for data visualization.


2016 ◽  
Vol 1 (2) ◽  
pp. 22 ◽  
Author(s):  
Navindra Kumari Palanisamy ◽  
Parasakthi Navaratnam ◽  
Shamala Devi Sekaran

Introduction: Streptococcus pneumoniae is an important bacterial pathogen, causing respiratory infection. Penicillin resistance in S. pneumoniae is associated with alterations in the penicillin binding proteins, while resistance to macrolides is conferred either by the modification of the ribosomal target site or efflux mechanism. This study aimed to characterize S. pneumoniae and its antibiotic resistance genes using 2 sets of multiplex PCRs. Methods: A quintuplex and triplex PCR was used to characterize the pbp1A, ermB, gyrA, ply, and the mefE genes. Fifty-eight penicillin sensitive strains (PSSP), 36 penicillin intermediate strains (PISP) and 26 penicillin resistance strains (PRSP) were used. Results: Alteration in pbp1A was only observed in PISP and PRSP strains, while PCR amplification of the ermB or mefE was observed only in strains with reduced susceptibility to erythromycin. The assay was found to be sensitive as simulated blood cultures showed the lowest level of detection to be 10cfu. Conclusions: As predicted, the assay was able to differentiate penicillin susceptible from the non-susceptible strains based on the detection of the pbp1A gene, which correlated with the MIC value of the strains.


Sign in / Sign up

Export Citation Format

Share Document