scholarly journals Mutations in Topoisomerase IV and DNA Gyrase of Staphylococcus aureus: Novel Pleiotropic Effects on Quinolone and Coumarin Activity

1998 ◽  
Vol 42 (1) ◽  
pp. 121-128 ◽  
Author(s):  
Bénédicte Fournier ◽  
David C. Hooper

ABSTRACT Previous studies have shown that topoisomerase IV and DNA gyrase interact with quinolones and coumarins in different ways. The MICs of coumarins (novobiocin and coumermycin) for MT5, a Staphylococcus aureus nov mutant, are higher than those for wild-type strains. Sequencing the gyrB gene encoding one subunit of the DNA gyrase revealed the presence of a double mutation likely to be responsible for this resistance: at codon 102 (Ile to Ser) and at codon 144 (Arg to Ile). For single-step flqA mutant MT5224c9, previously selected on ciprofloxacin, the fluoroquinolone MIC was higher and the coumarin MIC was lower than those for its parent, MT5. Sequencing the grlB andgrlA genes of topoisomerase IV of MT5224c9 showed a single Asn-470-to-Asp mutation in GrlB. Genetic outcrosses by transformation with chromosomal DNA and introduction of plasmids carrying either the wild-type or the mutated grlB gene indicated that this mutation causes both increased MICs of fluoroquinolones and decreased MICs of coumarins and that the mutant grlBallele is codominant for both phenotypes with multicopy alleles. Integration of these plasmids into the chromosome confirmed the codominance of fluoroquinolone resistance, butgrlB + appeared dominant over grlB(Asp-470) for coumarin resistance. Finally, the gyrA(Leu-84) mutation previously described as silent for fluoroquinolone resistance increased the MIC of nalidixic acid, a nonfluorinated quinolone. Combining the grlA (Phe-80) and grlB(Asp-470) mutations with this gyrA mutation also had differing effects. The findings indicate that alterations in topoisomerases may have pleiotropic effects on different classes of inhibitors as well as on inhibitors within the same class. A full understanding of drug action and resistance at the molecular level must take into account both inhibitor structure-activity relationships and the effects of different classes of topoisomerase mutants.

2000 ◽  
Vol 44 (12) ◽  
pp. 3344-3350 ◽  
Author(s):  
Dilek Ince ◽  
David C. Hooper

ABSTRACT Premafloxacin is a novel 8-methoxy fluoroquinolone with enhanced activity against Staphylococcus aureus. We found premafloxacin to be 32-fold more active than ciprofloxacin against wild-type S. aureus. Single mutations in either subunit of topoisomerase IV caused a four- to eightfold increase in the MICs of both quinolones. A double mutation (gyrA and eithergrlA or grlB) caused a 32-fold increase in the MIC of premafloxacin, while the MIC of ciprofloxacin increased 128-fold. Premafloxacin appeared to be a poor substrate for NorA, with NorA overexpression causing an increase of twofold or less in the MIC of premafloxacin in comparison to a fourfold increase in the MIC of ciprofloxacin. The frequency of selection of resistant mutants was 6.4 × 10−10 to 4.0 × 10−7 at twofold the MIC of premafloxacin, 2 to 4 log10 less than that with ciprofloxacin. Single-step mutants could not be selected at higher concentrations of premafloxacin. In five single-step mutants, only one previously described uncommon mutation (Ala116Glu), and four novel mutations (Arg43Cys, Asp69Tyr, Ala176Thr, and Pro157Leu), three of which were outside the quinolone resistance-determining region (QRDR) were found. Genetic linkage studies, in which incross ofgrlA + and outcross of mutations were performed, showed a high correlation between the mutations and the resistance phenotypes, and allelic exchange experiments confirmed the role of the novel mutations in grlA in resistance. Our results suggest that although topoisomerase IV is the primary target of premafloxacin, premafloxacin appears to interact with topoisomerase IV in a manner different from that of other quinolones and that the range of the QRDR of grlA should be expanded.


2001 ◽  
Vol 45 (10) ◽  
pp. 2703-2709 ◽  
Author(s):  
Tao Lu ◽  
Xilin Zhao ◽  
Xinying Li ◽  
Alex Drlica-Wagner ◽  
Jian-Ying Wang ◽  
...  

ABSTRACT The increasing prevalence of antibiotic resistance among bacterial pathogens prompted a microbiological study of fluoroquinolone structure-activity relationships with resistant mutants. Bacteriostatic and bactericidal activities for 12 fluoroquinolones were examined with a gyrase mutant of Mycobacterium smegmatis and a gyrase-topoisomerase IV double mutant of Staphylococcus aureus. For both organisms C-8 halogen and C-8 methoxy groups enhanced activity. The MIC at which 99% of the isolates tested were inhibited (MIC99) was reduced three- to fivefold for the M. smegmatis mutant and seven- to eightfold for theS. aureus mutant by C-8 bromine, chlorine, and methoxy groups. With both organisms a smaller reduction in the MIC99 (two- to threefold) was associated with a C-8 fluorine moiety. In most comparisons with M. smegmatis the response to a C-8 substituent was similar (within twofold) for wild-type and mutant cells. In contrast, mutant S. aureuswas affected more than the wild type by the addition of a C-8 substituent. C-8 halogen and methoxy groups also improved the ability to kill the two mutants and the respective wild-type cells when measured with various fluoroquinolone concentrations during an incubation period equivalent to four to five doubling times. Collectively these data help define a group of fluoroquinolones that can serve (i) as a base for structure refinement and (ii) as test compounds for slowing the development of fluoroquinolone resistance during infection of vertebrate hosts.


1996 ◽  
Vol 40 (5) ◽  
pp. 1157-1163 ◽  
Author(s):  
J Yamagishi ◽  
T Kojima ◽  
Y Oyamada ◽  
K Fujimoto ◽  
H Hattori ◽  
...  

A 4.2-kb DNA fragment conferring quinolone resistance was cloned from a quinolone-resistant clinical isolate of Staphylococcus aureus and was shown to possess a part of the grlB gene and a mutated grlA gene. S-80-->F and E-84-->K mutations in the grlA gene product were responsible for the quinolone resistance. The mutated grlA genes responsible for quinolone resistance were dominant over the wild-type allele, irrespective of gene dosage in a transformation experiment with the grlA gene alone. However, dominance by mutated grlA genes depended on gene dosage when bacteria were transformed with the grlA and grlB genes in combination. Quinolone-resistant gyrA mutants were easily isolated from a strain, S. aureus RN4220, carrying a plasmid with the mutated grlA gene, though this was not the case for other S. aureus strains lacking the plasmid. The elimination of this plasmid from such quinolone-resistant gyrA mutants resulted in marked increases in quinolone susceptibility. These results suggest that both DNA gyrase and DNA topoisomerase IV may be targets of quinolones and that the quinolone susceptibility of organisms may be determined by which of these enzymes is most quinolone sensitive.


2002 ◽  
Vol 46 (6) ◽  
pp. 1651-1657 ◽  
Author(s):  
Mark E. Jones ◽  
Ian A. Critchley ◽  
James A. Karlowsky ◽  
Renée S. Blosser-Middleton ◽  
Franz-Josef Schmitz ◽  
...  

ABSTRACT Two 8-methoxy nonfluorinated quinolones (NFQs), PGE 9262932 and PGE 9509924, were tested against contemporary clinical isolates of Staphylococcus aureus (n = 122) and Streptococcus pneumoniae (n = 69) with genetically defined quinolone resistance-determining regions (QRDRs). For S. aureus isolates with wild-type (WT) sequences at the QRDRs, the NFQs demonstrated activities 4- to 32-fold more potent (MICs at which 90% of isolates are inhibited [MIC90s], 0.03 μg/ml) than those of moxifloxacin (MIC90, 0.12 μg/ml), gatifloxacin (MIC90, 0.25 μg/ml), levofloxacin (MIC90, 0.25 μg/ml), and ciprofloxacin (MIC90, 1 μg/ml). Against S. pneumoniae isolates with WT sequences at gyrA and parC, the NFQs PGE 9262932 (MIC90, 0.03 μg/ml) and PGE 9509924 (MIC90, 0.12 μg/ml) were 8- to 64-fold and 2- to 16-fold more potent, respectively, than moxifloxacin (MIC90, 0.25 μg/ml), gatifloxacin (MIC90, 0.5 μg/ml), levofloxacin (MIC90, 2 μg/ml), and ciprofloxacin (MIC90, 2 μg/ml). The MICs of all agents were elevated for S. aureus isolates with alterations in GyrA (Glu88Lys or Ser84Leu) and GrlA (Ser80Phe) and S. pneumoniae isolates with alterations in GyrA (Ser81Phe or Ser81Tyr) and ParC (Ser79Phe or Lys137Asn). Fluoroquinolone MICs for S. aureus strains with double alterations in GyrA combined with double alterations in GrlA were ≥32 μg/ml, whereas the MICs of the NFQs for strains with these double alterations were 4 to 8 μg/ml. The PGE 9262932 and PGE 9509924 MICs for the S. pneumoniae isolates did not exceed 0.5 and 1 μg/ml, respectively, even for isolates with GyrA (Ser81Phe) and ParC (Ser79Phe) alterations, for which levofloxacin MICs were >16 μg/ml. No difference in the frequency of selection of mutations (<10−8 at four times the MIC) in wild-type or first-step mutant isolates of S. aureus or S. pneumoniae was detected for the two NFQs. On the basis of their in vitro activities, these NFQ agents show potential for the treatment of infections caused by isolates resistant to currently available fluoroquinolones.


2005 ◽  
Vol 49 (12) ◽  
pp. 5051-5057 ◽  
Author(s):  
Jacob Strahilevitz ◽  
Que Chi Truong-Bolduc ◽  
David C. Hooper

ABSTRACT DX-619, a novel des-fluoro(6) quinolone, was 16- to 32-fold, twofold, and four- to eightfold more potent than ciprofloxacin, gemifloxacin, and garenoxacin, respectively, against wild-type Staphylococcus aureus. DX-619 manifested equal fourfold increases in MIC against a common parC mutant and a common gyrA mutant and selected for mutants at up to two- to fourfold its MIC, consistent with dual-targeting properties. Of the four independent single-step mutants selected, two had new single mutations in parC (V87F and R17H), and two shared a new gyrA mutation (A26V), one with an additional deletion mutation in parE (Δ215-7). By allelic exchange, the ParC but not the GyrA or ParE mutation was shown to be fully responsible for the resistance phenotypes, suggesting an as yet undefined mechanism of resistance operating in conjunction with type II topoisomerase mutations contributed to resistance to DX-619. Studies with purified topoisomerase IV and gyrase from S. aureus also showed that DX-619 had similar activity against topoisomerase IV and gyrase (50% stimulation of cleavage complexes concentration, 1.25 and 0.62 to 1.25 μg/ml, respectively). Susceptibility studies with DX-619 and an array of efflux pump substrates with and without reserpine, an inhibitor of efflux pumps, suggested that resistance in DX-619-selected mutants is affected by mechanisms other than mutations in topoisomerases or known reserpine-inhibitable pumps in S. aureus and thus are likely novel.


1999 ◽  
Vol 43 (11) ◽  
pp. 2579-2585 ◽  
Author(s):  
Ian Morrissey ◽  
John George

ABSTRACT Streptococcus pneumoniae topoisomerase IV and DNA gyrase have been purified from a fluoroquinolone-susceptibleStreptococcus pneumoniae strain, from first-step mutants showing low-level resistance to ciprofloxacin, sparfloxacin, levofloxacin, and ofloxacin, and from two clinical isolates showing intermediate- and high-level fluoroquinolone resistance by a gene cloning method that produces recombinant proteins fromEscherichia coli. The concentrations of ciprofloxacin, sparfloxacin, levofloxacin, or ofloxacin required to inhibit wild-type topoisomerase IV were 8 to 16 times lower than those required to inhibit wild-type DNA gyrase. Furthermore, low-level resistance to these fluoroquinolones was entirely due to the reduced inhibitory activity of fluoroquinolones against topoisomerase IV. For all the laboratory strains, the 50% inhibitory concentration for topoisomerase IV directly correlated with the MIC. We therefore propose that withS. pneumoniae, ciprofloxacin, sparfloxacin, levofloxacin, and ofloxacin target topoisomerase IV in preference to DNA gyrase. Sitafloxacin, on the other hand, was found to be equipotent against either enzyme. This characteristic is unique for a fluoroquinolone. A reduction in the sensitivities of both topoisomerase IV and DNA gyrase are required, however, to achieve intermediate- or high-level fluoroquinolone resistance in S. pneumoniae.


1998 ◽  
Vol 42 (8) ◽  
pp. 2109-2112 ◽  
Author(s):  
Bénédicte Fournier ◽  
David C. Hooper

ABSTRACT The grlA genes of Staphylococcus aureusISP794 (wild type), MT5224c4 (grlA [Phe-80]), MT5224c2 (grlA [Pro-116]), and MT111 (grlA[Glu-116]) were cloned in pSK950, a shuttle vector, and introduced into S. aureus strains derived from strain RN4220. The mutations at position 116 of GrlA (Ala→Pro or Glu) caused an increase in the level of fluoroquinolone resistance and a decrease in the level of coumarin susceptibility, whereas the mutation at position 80 (Ser→Phe) caused only an increase in the level of fluoroquinolone resistance. In multicopy alleles, both types of mutations were codominant for fluoroquinolone resistance, and mutations at position 116 were also codominant for coumarin resistance.


1996 ◽  
Vol 40 (8) ◽  
pp. 1881-1888 ◽  
Author(s):  
E Y Ng ◽  
M Trucksis ◽  
D C Hooper

Mutations in the flqA (formerly ofx/cfx) resistance locus of Staphylococcus aureus were previously shown to be common after first-step selections for resistance to ciprofloxacin and ofloxacin and to map on the S. aureus chromosome distinctly from gyrA, gyrB, and norA.grlA and grlB, the genes for the topoisomerase IV of S. aureus, were identified from a genomic lambda library on a common KpnI fragment, and grlB hybridized specifically with the chromosomal SmaI A fragment, which contains the flqA locus. Amplification of grlA sequences (codons 1 to 251) by PCRs from nine independent single-step flqA mutants, one multistep mutant, and the parent strain identified mutations encoding a change from Ser to Phe at position 80 in four mutants, a novel change from Ala to either Glu or Pro at position 116 in three mutants, and no change in three mutants. In the multistep mutant, another resistance locus, flqC, was mapped by transformation to the chromosomal SmaI G fragment by linkage to omega(ch::Tn551)1051 (58%) and nov (97.9%), which encodes resistance to novobiocin. This fragment contains the gyrA gene, and flqC mutants had a mutation in gyrA encoding a change from Ser to Leu at position 84, a change previously found in resistant clinical isolates. In genetic outcrosses, the flqC (gyrA) mutation expressed resistance only in flqA mutants, including those with both types of grla mutations. The silent mutant allele of gyrA was present in a flqA background and expressed resistance only upon introduction of a grlA mutation. At fourfold the MIC of ciprofloxacin, the bactericidal activity of ciprofloxacin was reduced in a grlA mutant and was abolished in gyrA grlA double mutants. These findings provide direct genetic evidence that topoisomerase IV is the primary target of current fluoroquinolones in S. aureus and that this effect may result from the greater sensitivity of topoisomerase IV relative to that of DNA gyrase to these agents. Furthermore, resistance from an altered DNA gyrase requires resistant topoisomerase IV for its expression.


1997 ◽  
Vol 41 (12) ◽  
pp. 2733-2737 ◽  
Author(s):  
G W Kaatz ◽  
S M Seo

Fluoroquinolone resistance in Staphylococcus aureus results from amino acid substitutions at particular locations in the DNA gyrase A and B subunits as well as in the topoisomerase IV A subunit and from NorA-mediated efflux. More than one resistance mechanism may be present in a single strain. Fluoroquinolone-resistant derivatives of SA-1199, a methicillin-susceptible S. aureus strain, were selected in vivo or in vitro, and their mechanisms of fluoroquinolone resistance were identified. We found that many of the resistance mechanisms described above can develop in derivatives of a single parent strain, either singly or in combination, and can arise in a single step. Variances in MICs for strains with the same apparent resistance mechanisms likely are due to the presence of new or undetected but established means of fluoroquinolone resistance. NorA-mediated resistance can occur in the apparent absence of topoisomerase mutations and in some strains may be the result of a promoter region mutation causing increased expression of norA. However, increased expression of norA can occur independently of this mutation, suggesting that a regulatory locus for this gene exists elsewhere on the chromosome.


2006 ◽  
Vol 50 (2) ◽  
pp. 600-606 ◽  
Author(s):  
Jacob Strahilevitz ◽  
Ari Robicsek ◽  
David C. Hooper

ABSTRACT Fluoroquinolones target two bacterial type II topoisomerases, DNA gyrase and topoisomerase IV. Acquired resistance to quinolones occurs stepwise, with the first mutation occurring in the more sensitive target enzyme. To limit the emergence of resistance, quinolones should ideally possess dual activities against the two enzymes. For reasons that are as yet unclear, Staphylococcus aureus gyrase is less sensitive to quinolones than topoisomerase IV, counter to its greater sensitivity in Escherichia coli, thereby limiting the use of quinolones for the treatment of staphylococcal infections. Mutations in the α4-helix domain of the GyrA subunit of gyrase are important in determining quinolone resistance. We replaced an extended region encompassing the α4 domain in the E. coli GyrA protein with its homolog in S. aureus and tested for its ability to complement a thermosensitive gyrase and its catalytic and noncatalytic properties. Purified gyrase reconstituted with chimeric GyrA was more resistant to ciprofloxacin than wild-type gyrase at both inhibition of catalytic activity and stimulation of cleavage complexes, and this difference was more apparent in the presence of K+-glutamate. The chimeric GyrA subunit was able to complement thermosensitive gyrase, similar to wild-type GyrA. Without supplemental K+-glutamate the MICs of ciprofloxacin for thermosensitive E. coli complemented with chimeric DNA gyrase were equal to those for E. coli complemented with wild-type gyrase but were twofold higher in the presence of K+-glutamate. Our findings suggest that the extended α4 domain of S. aureus GyrA is responsible, at least in part, for the increased resistance of S. aureus gyrase to quinolones and that this effect is modulated by K+-glutamate.


Sign in / Sign up

Export Citation Format

Share Document