scholarly journals DX-619, a Novel Des-Fluoro(6) Quinolone Manifesting Low Frequency of Selection of Resistant Staphylococcus aureus Mutants: Quinolone Resistance beyond Modification of Type II Topoisomerases

2005 ◽  
Vol 49 (12) ◽  
pp. 5051-5057 ◽  
Author(s):  
Jacob Strahilevitz ◽  
Que Chi Truong-Bolduc ◽  
David C. Hooper

ABSTRACT DX-619, a novel des-fluoro(6) quinolone, was 16- to 32-fold, twofold, and four- to eightfold more potent than ciprofloxacin, gemifloxacin, and garenoxacin, respectively, against wild-type Staphylococcus aureus. DX-619 manifested equal fourfold increases in MIC against a common parC mutant and a common gyrA mutant and selected for mutants at up to two- to fourfold its MIC, consistent with dual-targeting properties. Of the four independent single-step mutants selected, two had new single mutations in parC (V87F and R17H), and two shared a new gyrA mutation (A26V), one with an additional deletion mutation in parE (Δ215-7). By allelic exchange, the ParC but not the GyrA or ParE mutation was shown to be fully responsible for the resistance phenotypes, suggesting an as yet undefined mechanism of resistance operating in conjunction with type II topoisomerase mutations contributed to resistance to DX-619. Studies with purified topoisomerase IV and gyrase from S. aureus also showed that DX-619 had similar activity against topoisomerase IV and gyrase (50% stimulation of cleavage complexes concentration, 1.25 and 0.62 to 1.25 μg/ml, respectively). Susceptibility studies with DX-619 and an array of efflux pump substrates with and without reserpine, an inhibitor of efflux pumps, suggested that resistance in DX-619-selected mutants is affected by mechanisms other than mutations in topoisomerases or known reserpine-inhibitable pumps in S. aureus and thus are likely novel.

2002 ◽  
Vol 46 (11) ◽  
pp. 3370-3380 ◽  
Author(s):  
Dilek Ince ◽  
Xiamei Zhang ◽  
L. Christine Silver ◽  
David C. Hooper

ABSTRACT We determined the target enzyme interactions of garenoxacin (BMS-284756, T-3811ME), a novel desfluoroquinolone, in Staphylococcus aureus by genetic and biochemical studies. We found garenoxacin to be four- to eightfold more active than ciprofloxacin against wild-type S. aureus. A single topoisomerase IV or gyrase mutation caused only a 2- to 4-fold increase in the MIC of garenoxacin, whereas a combination of mutations in both loci caused a substantial increase (128-fold). Overexpression of the NorA efflux pump had minimal effect on resistance to garenoxacin. With garenoxacin at twice the MIC, selection of resistant mutants (<7.4 × 10−12 to 4.0 × 10−11) was 5 to 6 log units less than that with ciprofloxacin. Mutations inside or outside the quinolone resistance-determining regions (QRDR) of either topoisomerase IV, or gyrase, or both were selected in single-step mutants, suggesting dual targeting of topoisomerase IV and gyrase. Three of the novel mutations were shown by genetic experiments to be responsible for resistance. Studies with purified topoisomerase IV and gyrase from S. aureus also showed that garenoxacin had similar activity against topoisomerase IV and gyrase (50% inhibitory concentration, 1.25 to 2.5 and 1.25 μg/ml, respectively), and although its activity against topoisomerase IV was 2-fold greater than that of ciprofloxacin, its activity against gyrase was 10-fold greater. This study provides the first genetic and biochemical data supporting the dual targeting of topoisomerase IV and gyrase in S. aureus by a quinolone as well as providing genetic proof for the expansion of the QRDRs to include the 5′ terminus of grlB and the 3′ terminus of gyrA.


2001 ◽  
Vol 45 (10) ◽  
pp. 2755-2764 ◽  
Author(s):  
Dilek Ince ◽  
David C. Hooper

ABSTRACT Gatifloxacin, an 8-methoxyfluoroquinolone, was found to be two- to fourfold more active against wild-typeStaphylococcus aureus ISP794 than its desmethoxy derivative, AM-1121, and ciprofloxacin, another desmethoxy fluoroquinolone. Single grlBA mutations caused two- to fourfold increases in the MIC of gatifloxacin, and a single gyrase mutation was silent. Double mutations in gyrA andgrlA or grlB caused a 32-fold increase in the MIC of gatifloxacin, in contrast to a 128-fold increase for ciprofloxacin and AM-1121. Overexpression of the NorA efflux pump had minimal effect on the MIC of gatifloxacin. The bactericidal activity of the three quinolones at four times the MIC differed only for a double mutant, with gatifloxacin exhibiting a killing pattern similar to that for ISP794, whereas ciprofloxacin and AM-1121 failed to show any killing. With gatifloxacin, selection of resistant mutants at twice the MIC was 100- to 1,000-fold less frequent than with the comparison quinolones, and mutants could rarely be selected at four times the MIC. The limit resistance in ISP74 was 512 times the MIC of gatifloxacin and 1,024 times the MICs of ciprofloxacin and AM-1121. Novel mutations in topoisomerase IV were selected in five of the six single-step mutants, three of which were shown to cause quinolone resistance by genetic studies. In conclusion, topoisomerase IV is the primary target of gatifloxacin. In contrast to comparison quinolones, mutations in both topoisomerase IV and gyrase are required for resistance to gatifloxacin by clinical breakpoints and do not abolish bactericidal effect, further supporting the benefit of the 8-methoxy substituent in gatifloxacin.


2003 ◽  
Vol 47 (1) ◽  
pp. 274-282 ◽  
Author(s):  
Dilek Ince ◽  
Xiamei Zhang ◽  
L. Christine Silver ◽  
David C. Hooper

ABSTRACT Gemifloxacin, a novel quinolone with potent activity against Staphylococcus aureus, was 8- to 16-fold more active against wild-type S. aureus than ciprofloxacin. The two- to fourfold increase in the MIC of gemifloxacin in genetically defined grlBA mutants and the twofold increase in a single gyrA mutant, supported by the low frequency of selection of resistant mutants at twice the MIC (7.4 × 10−11 to 1.1 × 10−10), suggested similar targeting of the two enzymes by gemifloxacin. Dual mutations in both gyrase and topoisomerase IV caused a 64- to 128-fold increase in the MIC of gemifloxacin, similar to that seen with ciprofloxacin. Gemifloxacin also had similar activity in vitro against topoisomerase IV and gyrase purified from S. aureus (50% inhibitory concentrations of 0.25 and 0.31 μg/ml, respectively). This activity was 10- to 20-fold higher than that of ciprofloxacin for topoisomerase IV and 33-fold higher than that for gyrase. In contrast to the in vitro findings, only topoisomerase IV mutants were selected in first-step mutants. Overexpression of the NorA efflux pump had a minimal effect on resistance to gemifloxacin, and a mutation in the promoter region of the gene for NorA was selected only in the sixth step of serial selection of mutants. Our data show that although gemifloxacin targets purified topoisomerase IV and gyrase similarly in vitro, topoisomerase IV is the preferred target in the bacteria. Selection of novel resistance mutations in grlA requires further expansion of quinolone-resistance-determining regions, and their study may provide increased insight into enzyme-quinolone interactions.


2002 ◽  
Vol 46 (6) ◽  
pp. 1651-1657 ◽  
Author(s):  
Mark E. Jones ◽  
Ian A. Critchley ◽  
James A. Karlowsky ◽  
Renée S. Blosser-Middleton ◽  
Franz-Josef Schmitz ◽  
...  

ABSTRACT Two 8-methoxy nonfluorinated quinolones (NFQs), PGE 9262932 and PGE 9509924, were tested against contemporary clinical isolates of Staphylococcus aureus (n = 122) and Streptococcus pneumoniae (n = 69) with genetically defined quinolone resistance-determining regions (QRDRs). For S. aureus isolates with wild-type (WT) sequences at the QRDRs, the NFQs demonstrated activities 4- to 32-fold more potent (MICs at which 90% of isolates are inhibited [MIC90s], 0.03 μg/ml) than those of moxifloxacin (MIC90, 0.12 μg/ml), gatifloxacin (MIC90, 0.25 μg/ml), levofloxacin (MIC90, 0.25 μg/ml), and ciprofloxacin (MIC90, 1 μg/ml). Against S. pneumoniae isolates with WT sequences at gyrA and parC, the NFQs PGE 9262932 (MIC90, 0.03 μg/ml) and PGE 9509924 (MIC90, 0.12 μg/ml) were 8- to 64-fold and 2- to 16-fold more potent, respectively, than moxifloxacin (MIC90, 0.25 μg/ml), gatifloxacin (MIC90, 0.5 μg/ml), levofloxacin (MIC90, 2 μg/ml), and ciprofloxacin (MIC90, 2 μg/ml). The MICs of all agents were elevated for S. aureus isolates with alterations in GyrA (Glu88Lys or Ser84Leu) and GrlA (Ser80Phe) and S. pneumoniae isolates with alterations in GyrA (Ser81Phe or Ser81Tyr) and ParC (Ser79Phe or Lys137Asn). Fluoroquinolone MICs for S. aureus strains with double alterations in GyrA combined with double alterations in GrlA were ≥32 μg/ml, whereas the MICs of the NFQs for strains with these double alterations were 4 to 8 μg/ml. The PGE 9262932 and PGE 9509924 MICs for the S. pneumoniae isolates did not exceed 0.5 and 1 μg/ml, respectively, even for isolates with GyrA (Ser81Phe) and ParC (Ser79Phe) alterations, for which levofloxacin MICs were >16 μg/ml. No difference in the frequency of selection of mutations (<10−8 at four times the MIC) in wild-type or first-step mutant isolates of S. aureus or S. pneumoniae was detected for the two NFQs. On the basis of their in vitro activities, these NFQ agents show potential for the treatment of infections caused by isolates resistant to currently available fluoroquinolones.


1998 ◽  
Vol 42 (1) ◽  
pp. 121-128 ◽  
Author(s):  
Bénédicte Fournier ◽  
David C. Hooper

ABSTRACT Previous studies have shown that topoisomerase IV and DNA gyrase interact with quinolones and coumarins in different ways. The MICs of coumarins (novobiocin and coumermycin) for MT5, a Staphylococcus aureus nov mutant, are higher than those for wild-type strains. Sequencing the gyrB gene encoding one subunit of the DNA gyrase revealed the presence of a double mutation likely to be responsible for this resistance: at codon 102 (Ile to Ser) and at codon 144 (Arg to Ile). For single-step flqA mutant MT5224c9, previously selected on ciprofloxacin, the fluoroquinolone MIC was higher and the coumarin MIC was lower than those for its parent, MT5. Sequencing the grlB andgrlA genes of topoisomerase IV of MT5224c9 showed a single Asn-470-to-Asp mutation in GrlB. Genetic outcrosses by transformation with chromosomal DNA and introduction of plasmids carrying either the wild-type or the mutated grlB gene indicated that this mutation causes both increased MICs of fluoroquinolones and decreased MICs of coumarins and that the mutant grlBallele is codominant for both phenotypes with multicopy alleles. Integration of these plasmids into the chromosome confirmed the codominance of fluoroquinolone resistance, butgrlB + appeared dominant over grlB(Asp-470) for coumarin resistance. Finally, the gyrA(Leu-84) mutation previously described as silent for fluoroquinolone resistance increased the MIC of nalidixic acid, a nonfluorinated quinolone. Combining the grlA (Phe-80) and grlB(Asp-470) mutations with this gyrA mutation also had differing effects. The findings indicate that alterations in topoisomerases may have pleiotropic effects on different classes of inhibitors as well as on inhibitors within the same class. A full understanding of drug action and resistance at the molecular level must take into account both inhibitor structure-activity relationships and the effects of different classes of topoisomerase mutants.


1998 ◽  
Vol 42 (8) ◽  
pp. 1917-1922 ◽  
Author(s):  
Hideyuki Fukuda ◽  
Satoshi Hori ◽  
Keiichi Hiramatsu

ABSTRACT Alternate mutations in the grlA and gyrAgenes were observed through the first- to fourth-step mutants which were obtained from four Staphylococcus aureus strains by sequential selection with several fluoroquinolones. The increases in the MICs of gatifloxacin accompanying those mutational steps suggest that primary targets of gatifloxacin in the wild type and the first-, second-, and third-step mutants are wild-type topoisomerase IV (topo IV), wild-type DNA gyrase, singly mutated topo IV, and singly mutated DNA gyrase, respectively. Gatifloxacin had activity equal to that of tosufloxacin and activity more potent than those of norfloxacin, ofloxacin, ciprofloxacin, and sparfloxacin against the second-step mutants (grlA gyrA; gatifloxacin MIC range, 1.56 to 3.13 μg/ml) and had the most potent activity against the third-step mutants (grlA gyrA grlA; gatifloxacin MIC range, 1.56 to 6.25 μg/ml), suggesting that gatifloxacin possesses the most potent inhibitory activity against singly mutated topo IV and singly mutated DNA gyrase among the quinolones tested. Moreover, gatifloxacin selected resistant mutants from wild-type and the second-step mutants at a low frequency. Gatifloxacin possessed potent activity (MIC, 0.39 μg/ml) against the NorA-overproducing strain S. aureus NY12, thenorA transformant, which was slightly lower than that against the parent strain SA113. The increases in the MICs of the quinolones tested against NY12 were negatively correlated with the hydrophobicity of the quinolones (correlation coefficient, −0.93;P < 0.01). Therefore, this slight decrease in the activity of gatifloxacin is attributable to its high hydrophobicity. Those properties of gatifloxacin likely explain its good activity against quinolone-resistant clinical isolates of S. aureusharboring the grlA, gyrA, and/ornorA mutations.


1996 ◽  
Vol 40 (12) ◽  
pp. 2691-2697 ◽  
Author(s):  
T D Gootz ◽  
R Zaniewski ◽  
S Haskell ◽  
B Schmieder ◽  
J Tankovic ◽  
...  

The MICs of trovafloxacin, ciprofloxacin, ofloxacin, and sparfloxacin at which 90% of isolates are inhibited for 55 isolates of pneumococci were 0.125, 1, 4, and 0.5 microgram/ml, respectively. Resistant mutants of two susceptible isolates were selected in a stepwise fashion on agar containing ciprofloxacin at 2 to 10 times the MIC. While no mutants were obtained at the highest concentration tested, mutants were obtained at four times the MIC of ciprofloxacin (4 micrograms/ml) at a frequency of 1.0 x 10(-9). Ciprofloxacin MICs for these first-step mutants ranged from 4 to 8 micrograms/ml, whereas trovafloxacin MICs were 0.25 to 0.5 microgram/ml. Amplification of the quinolone resistance-determining region of the grlA (parC; topoisomerase IV) and gyrA (DNA gyrase) genes of the parents and mutants revealed that changes of the serine at position 80 (Ser80) to Phe or Tyr (Staphylococcus aureus coordinates) in GrlA were associated with resistance to ciprofloxacin. Second-step mutants of these isolates were selected by plating the isolates on medium containing ciprofloxacin at 32 micrograms/ml. Mutants for which ciprofloxacin MICs were 32 to 256 micrograms/ml and trovafloxacin MICs were 4 to 16 micrograms/ml were obtained at a frequency of 1.0 x 10(-9). Second-step mutants also had a change in GyrA corresponding to a substitution in Ser84 to Tyr or Phe or in Glu88 to Lys. Trovafloxacin protected from infection mice whose lungs were inoculated with lethal doses of either the parent strain or the first-step mutant. These results indicate that resistance to fluoroquinolones in S. pneumoniae occurs in vitro at a low frequency, involving sequential mutations in topoisomerase IV and DNA gyrase. Trovafloxacin MICs for wild-type and first-step mutants are within clinically achievable levels in the blood and lungs of humans.


2001 ◽  
Vol 45 (12) ◽  
pp. 3544-3547 ◽  
Author(s):  
Masaya Takei ◽  
Hideyuki Fukuda ◽  
Ryuta Kishii ◽  
Masaki Hosaka

ABSTRACT The antibacterial activities and target inhibition of 15 quinolones against grlA and gyrA mutant strains were studied. The strains were obtained from wild-type Staphylococcus aureus MS5935 by selection with norfloxacin and nadifloxacin, respectively. The antibacterial activities of most quinolones against both mutant strains were lower than those against the wild-type strain. The ratios of MICs for the gyrA mutant strain to those for the grlA mutant strain (MIC ratio) varied from 0.125 to 4. The ratios of 50% inhibitory concentrations (IC50s) of quinolones against topoisomerase IV to those against DNA gyrase (IC50 ratios) also varied, from 0.177 to 5.52. A significant correlation between the MIC ratios and the IC50ratios was observed (r = 0.919; P < 0.001). These results suggest that the antibacterial activities of quinolones against the wild-type strain are involved not only in topoisomerase IV inhibition but also in DNA gyrase inhibition and that the target preference in the wild-type strain can be anticipated by the MIC ratios. Based on the MIC ratios, the quinolones were classified into three categories. Type I quinolones (norfloxacin, enoxacin, fleroxacin, ciprofloxacin, lomefloxacin, trovafloxacin, grepafloxacin, ofloxacin, and levofloxacin) had MIC ratios of <1, type II quinolones (sparfloxacin and nadifloxacin) had MIC ratios of >1, and type III quinolones (gatifloxacin, pazufloxacin, moxifloxacin, and clinafloxacin) had MIC ratios of 1. Type I and type II quinolones seem to prefer topoisomerase IV and DNA gyrase, respectively. Type III quinolones seem to target both enzymes at nearly the same level in bacterial cells (a phenomenon known as the dual-targeting property), and their IC50 ratios were approximately 2.


1996 ◽  
Vol 40 (12) ◽  
pp. 2714-2720 ◽  
Author(s):  
F Blanche ◽  
B Cameron ◽  
F X Bernard ◽  
L Maton ◽  
B Manse ◽  
...  

Staphylococcus aureus gyrA and gyrB genes encoding DNA gyrase subunits were cloned and coexpressed in Escherichia coli under the control of the T7 promoter-T7 RNA polymerase system, leading to soluble gyrase which was purified to homogeneity. Purified gyrase was catalytically indistinguishable from the gyrase purified from S. aureus and did not contain detectable amounts of topoisomerases from the E. coli host. Topoisomerase IV subunits GrlA and GrlB from S. aureus were also expressed in E. coli and were separately purified to apparent homogeneity. Topoisomerase IV, which was reconstituted by mixing equimolar amounts of GrlA and GrlB, had both ATP-dependent decatenation and DNA relaxation activities in vitro. This enzyme was more sensitive than gyrase to inhibition by typical fluoroquinolone antimicrobial agents such as ciprofloxacin or sparfloxacin, adding strong support to genetic studies which indicate that topoisomerase IV is the primary target of fluoroquinolones in S. aureus. The results obtained with ofloxacin suggest that this fluoroquinolone could also primarily target gyrase. No cleavable complex could be detected with S. aureus gyrase upon incubation with ciprofloxacin or sparfloxacin at concentrations which fully inhibit DNA supercoiling. This suggests that these drugs do not stabilize the open DNA-gyrase complex, at least under standard in vitro incubation conditions, but are more likely to interfere primarily with the DNA breakage step, contrary to what has been reported with E. coli gyrase. Both S. aureus gyrase-catalyzed DNA supercoiling and S. aureus topoisomerase IV-catalyzed decatenation were dramatically stimulated by potassium glutamate or aspartate (500- and 50-fold by 700 and 350 mM glutamate, respectively), whereas topoisomerase IV-dependent DNA relaxation was inhibited 3-fold by 350 mM glutamate. The relevance of the effect of dicarboxylic amino acids on the activities of type II topoisomerases is discussed with regard to the intracellular osmolite composition of S. aureus.


2000 ◽  
Vol 44 (12) ◽  
pp. 3344-3350 ◽  
Author(s):  
Dilek Ince ◽  
David C. Hooper

ABSTRACT Premafloxacin is a novel 8-methoxy fluoroquinolone with enhanced activity against Staphylococcus aureus. We found premafloxacin to be 32-fold more active than ciprofloxacin against wild-type S. aureus. Single mutations in either subunit of topoisomerase IV caused a four- to eightfold increase in the MICs of both quinolones. A double mutation (gyrA and eithergrlA or grlB) caused a 32-fold increase in the MIC of premafloxacin, while the MIC of ciprofloxacin increased 128-fold. Premafloxacin appeared to be a poor substrate for NorA, with NorA overexpression causing an increase of twofold or less in the MIC of premafloxacin in comparison to a fourfold increase in the MIC of ciprofloxacin. The frequency of selection of resistant mutants was 6.4 × 10−10 to 4.0 × 10−7 at twofold the MIC of premafloxacin, 2 to 4 log10 less than that with ciprofloxacin. Single-step mutants could not be selected at higher concentrations of premafloxacin. In five single-step mutants, only one previously described uncommon mutation (Ala116Glu), and four novel mutations (Arg43Cys, Asp69Tyr, Ala176Thr, and Pro157Leu), three of which were outside the quinolone resistance-determining region (QRDR) were found. Genetic linkage studies, in which incross ofgrlA + and outcross of mutations were performed, showed a high correlation between the mutations and the resistance phenotypes, and allelic exchange experiments confirmed the role of the novel mutations in grlA in resistance. Our results suggest that although topoisomerase IV is the primary target of premafloxacin, premafloxacin appears to interact with topoisomerase IV in a manner different from that of other quinolones and that the range of the QRDR of grlA should be expanded.


Sign in / Sign up

Export Citation Format

Share Document