scholarly journals Alterations in the GyrA Subunit of DNA Gyrase and the ParC Subunit of DNA Topoisomerase IV Associated with Quinolone Resistance in Enterococcus faecalis

1998 ◽  
Vol 42 (2) ◽  
pp. 433-435 ◽  
Author(s):  
Emiko Kanematsu ◽  
Takashi Deguchi ◽  
Mitsuru Yasuda ◽  
Takeshi Kawamura ◽  
Yoshinori Nishino ◽  
...  

ABSTRACT The gyrA and parC genes of 31 clinical isolates of Enterococcus faecalis, including fluoroquinolone-resistant isolates, were partially sequenced and analyzed for target alterations. Topoisomerase IV may be a primary target in E. faecalis, but high-level fluoroquinolone resistance was associated with simultaneous alterations in both GyrA and ParC.

1998 ◽  
Vol 42 (12) ◽  
pp. 3293-3295 ◽  
Author(s):  
Zhiyu Li ◽  
Takashi Deguchi ◽  
Mitsuru Yasuda ◽  
Takeshi Kawamura ◽  
Emiko Kanematsu ◽  
...  

ABSTRACT We examined 22 clinical isolates of Staphylococcus epidermidis to analyze the association of alterations in GyrA and ParC with fluoroquinolone resistance. The simultaneous presence of GyrA and ParC alterations was associated with a high level of fluoroquinolone resistance in the clinical isolates of S. epidermidis.


1997 ◽  
Vol 41 (3) ◽  
pp. 699-701 ◽  
Author(s):  
T Deguchi ◽  
A Fukuoka ◽  
M Yasuda ◽  
M Nakano ◽  
S Ozeki ◽  
...  

We determined a partial sequence of the Klebsiella pneumoniae parC gene, including the region analogous to the quinolone resistance-determining region of the Escherichia coli gyrA gene, and examined 26 clinical strains of K. pneumoniae for an association of alterations in GyrA and ParC with susceptibilities to quinolones. The study suggests that in K. pneumoniae DNA gyrase is a primary target of quinolones and that ParC alterations play a complementary role in the development of higher-level fluoroquinolone resistance.


2002 ◽  
Vol 46 (10) ◽  
pp. 3249-3252 ◽  
Author(s):  
Kenji Hirose ◽  
Ai Hashimoto ◽  
Kazumichi Tamura ◽  
Yoshiaki Kawamura ◽  
Takayuki Ezaki ◽  
...  

ABSTRACT The mutations that are responsible for fluoroquinolone resistance in the gyrA, gyrB, parC, and parE genes of Salmonella enterica serovar Typhi and serovar Paratyphi A were investigated. The sequences of the quinolone resistance-determining region of the gyrA gene in clinical isolates which showed decreased susceptibilities to fluoroquinolones had a single mutation at either the Ser-83 or the Asp-87 codon, and no mutations were found in the gyrB, parC, and parE genes.


2005 ◽  
Vol 49 (6) ◽  
pp. 2479-2486 ◽  
Author(s):  
Nataliya Korzheva ◽  
Todd A. Davies ◽  
Raul Goldschmidt

ABSTRACT Resistance of Streptococcus pneumoniae to fluoroquinolones is caused predominantly by amino acid substitutions at positions Ser79 of ParC and Ser81 of GyrA to either Phe or Tyr encoded in the quinolone resistance-determining regions of the parC topoisomerase IV and gyrA DNA gyrase genes. Analysis of highly resistant clinical isolates identified novel second-step substitutions, Ser79Leu (ParC) and Ser81Ile (GyrA). To determine contributions of these new mutations to fluoroquinolone resistance either alone or in combination with other Ser79/81 alleles, the substitutions Ser79Leu/Phe/Tyr in ParC and Ser81Ile/Phe/Tyr in GyrA were introduced into the R6 background, resulting in 15 isogenic strains. Their level of fluoroquinolone resistance was determined by susceptibility testing for ciprofloxacin, levofloxacin, moxifloxacin, gatifloxacin, gemifloxacin, garenoxacin, and norfloxacin. Leu79 and Ile81 alone as well as 79/81Phe/Tyr substitutions did not contribute significantly to resistance, with fluoroquinolone MICs increasing two- to fourfold compared to wild type for all agents tested. Fluoroquinolone MICs for double transformants ParC Ser79Phe/Tyr/Leu-GyrA Ser81Phe/Tyr were uniformly increased by 8- to 64-fold regardless of pairs of amino acid substitutions. However, combinations including Ile81 conferred two- to fourfold-higher levels of resistance than did combinations including any other Ser81 GyrA substitution, thus demonstrating the differential effects of diverse amino acid substitutions at particular hotspots on fluoroquinolone MICs.


1998 ◽  
Vol 42 (11) ◽  
pp. 2792-2798 ◽  
Author(s):  
Irene González ◽  
Marios Georgiou ◽  
Fernando Alcaide ◽  
Delia Balas ◽  
Josefina Liñares ◽  
...  

ABSTRACT The nucleotide sequences of the quinolone resistance-determining regions (QRDRs) of the parC and gyrA genes from seven ciprofloxacin-resistant (Cpr) isolates of viridans group streptococci (two high-level Cpr Streptococcus oralis and five low-level Cpr Streptococcus mitis isolates) were determined and compared with those obtained from susceptible isolates. The nucleotide sequences of the QRDRs of the parE and gyrBgenes from the five low-level Cpr S. mitisisolates and from the NCTC 12261 type strain were also analyzed. Four of these low-level Cpr isolates had changes affecting the subunits of DNA topoisomerase IV: three in Ser-79 (to Phe or Ile) of ParC and one in ParE at a position not previously described to be involved in quinolone resistance (Pro-424). One isolate did not show any mutation. The two high-level Cpr S. oralisisolates showed mutations affecting equivalent residue positions of ParC and GyrA, namely, Ser-79 to Phe and Ser-81 to Phe or Tyr, respectively. The parC mutations were able to transformStreptococcus pneumoniae to ciprofloxacin resistance, while the gyrA mutations transformed S. pneumoniaeonly when mutations in parC were present. These results suggest that DNA topoisomerase IV is a primary target of ciprofloxacin in viridans group streptococci, DNA gyrase being a secondary target.


1999 ◽  
Vol 43 (4) ◽  
pp. 954-956 ◽  
Author(s):  
Cécile M. Bebear ◽  
Joel Renaudin ◽  
Alain Charron ◽  
Hélène Renaudin ◽  
Bertille de Barbeyrac ◽  
...  

ABSTRACT Five clinical isolates of Mycoplasma hominis from three different patients were examined for resistance to fluoroquinolones; some of these isolates were probably identical. All five isolates harbored amino acid substitutions in the quinolone resistance-determining regions of both DNA gyrase (GyrA) and topoisomerase IV (ParC or ParE). Furthermore, the novobiocin MIC for three isolates showed a significant increase. This is the first characterization of fluoroquinolone-resistant clinical mycoplasma isolates from humans.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5662
Author(s):  
Natassja G. Bush ◽  
Isabel Diez-Santos ◽  
Lauren R. Abbott ◽  
Anthony Maxwell

Fluoroquinolones (FQs) are arguably among the most successful antibiotics of recent times. They have enjoyed over 30 years of clinical usage and become essential tools in the armoury of clinical treatments. FQs target the bacterial enzymes DNA gyrase and DNA topoisomerase IV, where they stabilise a covalent enzyme-DNA complex in which the DNA is cleaved in both strands. This leads to cell death and turns out to be a very effective way of killing bacteria. However, resistance to FQs is increasingly problematic, and alternative compounds are urgently needed. Here, we review the mechanisms of action of FQs and discuss the potential pathways leading to cell death. We also discuss quinolone resistance and how quinolone treatment can lead to resistance to non-quinolone antibiotics.


1999 ◽  
Vol 43 (7) ◽  
pp. 1631-1637 ◽  
Author(s):  
Donald T. Dubin ◽  
Joseph E. Fitzgibbon ◽  
Massoumeh D. Nahvi ◽  
Joseph F. John

ABSTRACT Coagulase-negative staphylococcal isolates (n = 188) were screened for susceptibility to oxacillin, ciprofloxacin, and trovafloxacin, a new fluoroquinolone. At an oxacillin concentration of ≥4 μg/ml, 43% were methicillin resistant; of these, 70% were ciprofloxacin resistant (MIC, ≥4 μg/ml). Of the methicillin-resistant, ciprofloxacin-resistant isolates, 46% were susceptible to ≤2 μg of trovafloxacin per ml and 32% were susceptible to ≤1 μg of trovafloxacin per ml. Sixteen isolates, including twelve that expressed fluoroquinolone resistance, were chosen for detailed analysis. Identification of species by rRNA sequencing revealed a preponderance of Staphylococcus haemolyticus andS. hominis among fluoroquinolone-resistant strains. Segments of genes (gyrA and grlA) encoding DNA gyrase and DNA topoisomerase IV were sequenced. Considerable interspecies variation was noted, mainly involving noncoding nucleotide changes. Intraspecies variation consisted of coding changes associated with fluoroquinolone resistance. As for S. aureus, ciprofloxacin resistance (MIC, ≥8 μg/ml) and increased trovafloxacin MICs (0.25 to 2 μg/ml) could be conferred by the combined presence of single mutations in each gyrA and grlA gene. Trovafloxacin MICs of ≥8 μg/ml also occurred, but these required an additional mutation in grlA.


1996 ◽  
Vol 40 (5) ◽  
pp. 1157-1163 ◽  
Author(s):  
J Yamagishi ◽  
T Kojima ◽  
Y Oyamada ◽  
K Fujimoto ◽  
H Hattori ◽  
...  

A 4.2-kb DNA fragment conferring quinolone resistance was cloned from a quinolone-resistant clinical isolate of Staphylococcus aureus and was shown to possess a part of the grlB gene and a mutated grlA gene. S-80-->F and E-84-->K mutations in the grlA gene product were responsible for the quinolone resistance. The mutated grlA genes responsible for quinolone resistance were dominant over the wild-type allele, irrespective of gene dosage in a transformation experiment with the grlA gene alone. However, dominance by mutated grlA genes depended on gene dosage when bacteria were transformed with the grlA and grlB genes in combination. Quinolone-resistant gyrA mutants were easily isolated from a strain, S. aureus RN4220, carrying a plasmid with the mutated grlA gene, though this was not the case for other S. aureus strains lacking the plasmid. The elimination of this plasmid from such quinolone-resistant gyrA mutants resulted in marked increases in quinolone susceptibility. These results suggest that both DNA gyrase and DNA topoisomerase IV may be targets of quinolones and that the quinolone susceptibility of organisms may be determined by which of these enzymes is most quinolone sensitive.


1999 ◽  
Vol 43 (4) ◽  
pp. 947-949 ◽  
Author(s):  
Nagwa el Amin ◽  
Shah Jalal ◽  
Bengt Wretlind

ABSTRACT High-level quinolone resistance in Enterococcus faeciumwas associated with mutations in both gyrA andparC genes in 10 of 11 resistant strains. One low-level resistant strain without such mutations may instead possess an efflux mechanism or alterations in the other subunits of the gyrase or topoisomerase IV genes. These findings are similar to those for other gram-positive bacteria, such as Enterococcus faecalis.


Sign in / Sign up

Export Citation Format

Share Document