scholarly journals Mutations in the gyrA, parC, and parE Genes Associated with Fluoroquinolone Resistance in Clinical Isolates of Mycoplasma hominis

1999 ◽  
Vol 43 (4) ◽  
pp. 954-956 ◽  
Author(s):  
Cécile M. Bebear ◽  
Joel Renaudin ◽  
Alain Charron ◽  
Hélène Renaudin ◽  
Bertille de Barbeyrac ◽  
...  

ABSTRACT Five clinical isolates of Mycoplasma hominis from three different patients were examined for resistance to fluoroquinolones; some of these isolates were probably identical. All five isolates harbored amino acid substitutions in the quinolone resistance-determining regions of both DNA gyrase (GyrA) and topoisomerase IV (ParC or ParE). Furthermore, the novobiocin MIC for three isolates showed a significant increase. This is the first characterization of fluoroquinolone-resistant clinical mycoplasma isolates from humans.

2005 ◽  
Vol 49 (6) ◽  
pp. 2479-2486 ◽  
Author(s):  
Nataliya Korzheva ◽  
Todd A. Davies ◽  
Raul Goldschmidt

ABSTRACT Resistance of Streptococcus pneumoniae to fluoroquinolones is caused predominantly by amino acid substitutions at positions Ser79 of ParC and Ser81 of GyrA to either Phe or Tyr encoded in the quinolone resistance-determining regions of the parC topoisomerase IV and gyrA DNA gyrase genes. Analysis of highly resistant clinical isolates identified novel second-step substitutions, Ser79Leu (ParC) and Ser81Ile (GyrA). To determine contributions of these new mutations to fluoroquinolone resistance either alone or in combination with other Ser79/81 alleles, the substitutions Ser79Leu/Phe/Tyr in ParC and Ser81Ile/Phe/Tyr in GyrA were introduced into the R6 background, resulting in 15 isogenic strains. Their level of fluoroquinolone resistance was determined by susceptibility testing for ciprofloxacin, levofloxacin, moxifloxacin, gatifloxacin, gemifloxacin, garenoxacin, and norfloxacin. Leu79 and Ile81 alone as well as 79/81Phe/Tyr substitutions did not contribute significantly to resistance, with fluoroquinolone MICs increasing two- to fourfold compared to wild type for all agents tested. Fluoroquinolone MICs for double transformants ParC Ser79Phe/Tyr/Leu-GyrA Ser81Phe/Tyr were uniformly increased by 8- to 64-fold regardless of pairs of amino acid substitutions. However, combinations including Ile81 conferred two- to fourfold-higher levels of resistance than did combinations including any other Ser81 GyrA substitution, thus demonstrating the differential effects of diverse amino acid substitutions at particular hotspots on fluoroquinolone MICs.


1997 ◽  
Vol 41 (3) ◽  
pp. 699-701 ◽  
Author(s):  
T Deguchi ◽  
A Fukuoka ◽  
M Yasuda ◽  
M Nakano ◽  
S Ozeki ◽  
...  

We determined a partial sequence of the Klebsiella pneumoniae parC gene, including the region analogous to the quinolone resistance-determining region of the Escherichia coli gyrA gene, and examined 26 clinical strains of K. pneumoniae for an association of alterations in GyrA and ParC with susceptibilities to quinolones. The study suggests that in K. pneumoniae DNA gyrase is a primary target of quinolones and that ParC alterations play a complementary role in the development of higher-level fluoroquinolone resistance.


2001 ◽  
Vol 45 (8) ◽  
pp. 2263-2268 ◽  
Author(s):  
Takaaki Akasaka ◽  
Mayumi Tanaka ◽  
Akihito Yamaguchi ◽  
Kenichi Sato

ABSTRACT The major mechanism of resistance to fluoroquinolones forPseudomonas aeruginosa is the modification of type II topoisomerases (DNA gyrase and topoisomerase IV). We examined the mutations in quinolone-resistance-determining regions (QRDR) ofgyrA, gyrB, parC, and parE genes of recent clinical isolates. There were 150 isolates with reduced susceptibilities to levofloxacin and 127 with reduced susceptibilities to ciprofloxacin among 513 isolates collected during 1998 and 1999 in Japan. Sequencing results predicted replacement of an amino acid in the QRDR of DNA gyrase (GyrA or GyrB) for 124 of the 150 strains (82.7%); among these, 89 isolates possessed mutations in parC orparE which lead to amino acid changes. Substitutions of both Ile for Thr-83 in GyrA and Leu for Ser-87 in ParC were the principal changes, being detected in 48 strains. These replacements were obviously associated with reduced susceptibilities to levofloxacin, ciprofloxacin, and sparfloxacin; however, sitafloxacin showed high activity against isolates with these replacements. We purified GyrA (The-83 to Ile) and ParC (Ser-87 to Leu) by site-directed mutagenesis and compared the inhibitory activities of the fluoroquinolones. Sitafloxacin showed the most potent inhibitory activities against both altered topoisomerases among the fluoroquinolones tested. These results indicated that, compared with other available quinolones, sitafloxacin maintained higher activity against recent clinical isolates with multiple mutations ingyrA and parC, which can be explained by the high inhibitory activities of sitafloxacin against both mutated enzymes.


1998 ◽  
Vol 42 (2) ◽  
pp. 433-435 ◽  
Author(s):  
Emiko Kanematsu ◽  
Takashi Deguchi ◽  
Mitsuru Yasuda ◽  
Takeshi Kawamura ◽  
Yoshinori Nishino ◽  
...  

ABSTRACT The gyrA and parC genes of 31 clinical isolates of Enterococcus faecalis, including fluoroquinolone-resistant isolates, were partially sequenced and analyzed for target alterations. Topoisomerase IV may be a primary target in E. faecalis, but high-level fluoroquinolone resistance was associated with simultaneous alterations in both GyrA and ParC.


2006 ◽  
Vol 50 (4) ◽  
pp. 1228-1237 ◽  
Author(s):  
Nagraj Mani ◽  
Christian H. Gross ◽  
Jonathan D. Parsons ◽  
Brian Hanzelka ◽  
Ute Müh ◽  
...  

ABSTRACT Antibiotics with novel mechanisms of action are becoming increasingly important in the battle against bacterial resistance to all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV (topoIV) are the familiar targets of fluoroquinolone and coumarin antibiotics. Here we present the characterization of two members of a new class of synthetic bacterial topoII ATPase inhibitors: VRT-125853 and VRT-752586. These aminobenzimidazole compounds were potent inhibitors of both DNA gyrase and topoIV and had excellent antibacterial activities against a wide spectrum of problematic pathogens responsible for both nosocomial and community-acquired infections, including staphylococci, streptococci, enterococci, and mycobacteria. Consistent with the novelty of their structures and mechanisms of action, antibacterial potency was unaffected by commonly encountered resistance phenotypes, including fluoroquinolone resistance. In time-kill assays, VRT-125853 and VRT-752586 were bactericidal against Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis, and Haemophilus influenzae, causing 3-log reductions in viable cells within 24 h. Finally, similar to the fluoroquinolones, relatively low frequencies of spontaneous resistance to VRT-125853 and VRT-752586 were found, a property consistent with their in vitro dual-targeting activities.


2012 ◽  
Vol 6 (10) ◽  
pp. e1838 ◽  
Author(s):  
Kazumasa Yokoyama ◽  
Hyun Kim ◽  
Tetsu Mukai ◽  
Masanori Matsuoka ◽  
Chie Nakajima ◽  
...  

2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Ting Yang ◽  
Lianlian Pan ◽  
Ningning Wu ◽  
Lin Wang ◽  
Zhen Liu ◽  
...  

ABSTRACT Antibiotic resistance is a global concern; however, data on antibiotic-resistant Ureaplasma spp. and Mycoplasma hominis are limited in comparison to similar data on other microbes. A total of 492 Ureaplasma spp. and 13 M. hominis strains obtained in Hangzhou, China, in 2018 were subjected to antimicrobial susceptibility testing for levofloxacin, moxifloxacin, erythromycin, clindamycin, and doxycycline using the broth microdilution method. The mechanisms underlying quinolone and macrolide resistance were determined. Meanwhile, a model of the topoisomerase IV complex bound to levofloxacin in wild-type Ureaplasma spp. was built to study the quinolone resistance mutations. For Ureaplasma spp., the levofloxacin, moxifloxacin, and erythromycin resistance rates were 84.69%, 51.44%, and 3.59% in U. parvum and 82.43%, 62.16%, and 5.40% in U. urealyticum, respectively. Of the 13 M. hominis strains, 11 were resistant to both levofloxacin and moxifloxacin, and five strains showed clindamycin resistance. ParC S83L was the most prevalent mutation in levofloxacin-resistant Ureaplasma strains, followed by ParE R448K. The two mutations GyrA S153L and ParC S91I were commonly identified in quinolone-resistant M. hominis. A molecular dynamics-refined structure revealed that quinolone resistance-associated mutations inhibited the interaction and reduced affinity with gyrase or topoisomerase IV and quinolones. The novel mutations S21A in the L4 protein and G2654T and T2245C in 23S rRNA and the ermB gene were identified in erythromycin-resistant Ureaplasma spp. As fluoroquinolone resistance in Ureaplasma spp. and Mycoplasma hominis remains high in China, the rational use of antibiotics needs to be further enhanced.


1999 ◽  
Vol 43 (11) ◽  
pp. 2671-2677 ◽  
Author(s):  
R. Bonnet ◽  
C. De Champs ◽  
D. Sirot ◽  
C. Chanal ◽  
R. Labia ◽  
...  

ABSTRACT In a survey of resistance to amoxicillin among clinical isolates ofProteus mirabilis, 10 TEM-type β-lactamases were characterized: (i) the well-known penicillinases TEM-1 and TEM-2, the extended-spectrum β-lactamases (ESBLs) TEM-3 and TEM-24, and the inhibitor-resistant TEM (IRT) TEM-44 and (ii) five novel enzymes, a penicillinase TEM-57 similar to TEM-1, an ESBL TEM-66 similar to TEM-3, and three IRTs, TEM-65, TEM-73, and TEM-74. The penicillinase TEM-57 and the ESBL TEM-66 differed from TEM-1 and TEM-3, respectively, by the amino acid substitution Gly-92→Asp (nucleotide mutation G-477→A). This substitution could have accounted for the decrease in pIs (5.2 for TEM-57 and 6.0 for TEM-66) but did not necessarily affect the intrinsic activities of these enzymes. The IRT TEM-65 was an IRT-1-like IRT (Cys-244) related to TEM-2 (Lys-39). The two other IRTs, TEM-73 and TEM-74, were related to IRT-1 (Cys-244) and IRT-2 (Ser-244), respectively, and harbored the amino acid substitutions Leu-21→Phe and Thr-265→Met. In this study, the ESBLs TEM-66, TEM-24, and TEM-3 were encoded by large (170- to 180-kb) conjugative plasmids that exhibited similar patterns after digestion and hybridization with the TEM and AAC(6′)I probes. The three IRTs TEM-65, TEM-73, and TEM-74 were encoded by plasmids that ranged in size from 42 to 70 kb but for which no transfer was obtained. The characterization of five new plasmid-mediated TEM-type β-lactamases and the first report of TEM-24 in P. mirabilis are evidence of the wide diversity of β-lactamases produced in this species and of its possible role as a β-lactamase-encoding plasmid reservoir.


2005 ◽  
Vol 49 (5) ◽  
pp. 1714-1719 ◽  
Author(s):  
Josep M. Sierra ◽  
Luis Martinez-Martinez ◽  
Fernando Vázquez ◽  
Ernest Giralt ◽  
Jordi Vila

ABSTRACT Quinolone susceptibility was analyzed in 17 clinical isolates of Corynebacterium striatum and 9 strains of Corynebacterium amycolatum by the E-test method in Mueller-Hinton agar plates. The C. striatum ATCC 6940 strain was used as a control strain. The amplified quinolone resistance determining regions of the gyrA genes of C. amycolatum and C. striatum were characterized. Four in vitro quinolone-resistant mutants of C. amycolatum were selected and analyzed. Both in vivo and in vitro quinolone-resistant strains of C. amycolatum showed high levels of fluoroquinolone resistance in strains with a double mutation leading to an amino acid change in positions 87 and 91 or positions 87 and 88 (unusual mutation) of GyrA, whereas the same concomitant mutations at amino acid positions 87 and 91 in GyrA of C. striatum produced high levels of resistance to ciprofloxacin and levofloxacin but only showed a moderate increase in the MIC of moxifloxacin, suggesting that other mechanism(s) of quinolone resistance could be involved in moxifloxacin resistance in C. amycolatum. Moreover, a PCR-RFLP-NcoI of the gyrA gene was developed to distinguish between C. amycolatum and C. striatum species.


Sign in / Sign up

Export Citation Format

Share Document