scholarly journals Evaluation of Bactericidal Activities of LY333328, Vancomycin, Teicoplanin, Ampicillin-Sulbactam, Trovafloxacin, and RP59500 Alone or in Combination with Rifampin or Gentamicin against Different Strains of Vancomycin-Intermediate Staphylococcus aureus by Time-Kill Curve Methods

1999 ◽  
Vol 43 (3) ◽  
pp. 717-721 ◽  
Author(s):  
Ellie Hershberger ◽  
Jeffrey R. Aeschlimann ◽  
Tabitha Moldovan ◽  
Michael J. Rybak

This in vitro study evaluated the activities of vancomycin, LY333328, and teicoplanin alone and in combination with gentamicin, rifampin, and RP59500 against Staphylococcus aureusisolates with intermediate susceptibilities to vancomycin. Ampicillin-sulbactam and trovafloxacin were also evaluated. LY333328 and ampicillin-sulbactam resulted in bactericidal activity against all isolates. The combination of gentamicin with glycopeptides showed synergistic activity, while rifampin had no added benefit.

2016 ◽  
Author(s):  
Mayram Tuysuz ◽  
Sibel Dosler ◽  
Ayse Seher Birteksoz Tan ◽  
Gulten Otuk

Background: Because of increasing antibiotic resistance, herbal teas are the most popular natural alternatives, which are gaining even more importance. We examined the antimicrobial activities of 31 herbal teas both alone and in combination with antibiotics or antifungals against the standard and clinical isolates of Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, methicillin susceptible/resistant Staphylococcus aureus and Candida albicans. Methods: The antimicrobial activities of the teas were determined by using the disk diffusion and microbroth dilution methods, and the combination studies were examined by using the microbroth checkerboard and time killing curve methods. Results: Rosehip, rosehip bag, pomegranate blossom, thyme, wormwood, mint, echinacea bag, cinnamon, black, and green teas were active against most of the studied microorganisms. In the combination studies, we characterized all the expected effects (synergistic, additive, and antagonistic) between the teas and the antimicrobials. While synergy was observed more frequently between ampicillin, ampicillin-sulbactam, or nystatine, and the various tea combinations, most of the effects between the ciprofloxacin, erythromycin, cefuroxime, or amikacin and various tea combinations, particularly rosehip, rosehip bag, and pomegranate blossom teas, were antagonistic. The results of the time kill curve analyses showed that none of the herbal teas were bactericidal in their usage concentrations; however, in combination they were. Discussion: Some herbal teas, particularly rosehip and pomegranate blossom should be avoided because of antagonistic interactions during the course of antibiotic treatment or should be consumed alone.


2016 ◽  
Author(s):  
Mayram Tuysuz ◽  
Sibel Dosler ◽  
Ayse Seher Birteksoz Tan ◽  
Gulten Otuk

Background: Because of increasing antibiotic resistance, herbal teas are the most popular natural alternatives, which are gaining even more importance. We examined the antimicrobial activities of 31 herbal teas both alone and in combination with antibiotics or antifungals against the standard and clinical isolates of Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, methicillin susceptible/resistant Staphylococcus aureus and Candida albicans. Methods: The antimicrobial activities of the teas were determined by using the disk diffusion and microbroth dilution methods, and the combination studies were examined by using the microbroth checkerboard and time killing curve methods. Results: Rosehip, rosehip bag, pomegranate blossom, thyme, wormwood, mint, echinacea bag, cinnamon, black, and green teas were active against most of the studied microorganisms. In the combination studies, we characterized all the expected effects (synergistic, additive, and antagonistic) between the teas and the antimicrobials. While synergy was observed more frequently between ampicillin, ampicillin-sulbactam, or nystatine, and the various tea combinations, most of the effects between the ciprofloxacin, erythromycin, cefuroxime, or amikacin and various tea combinations, particularly rosehip, rosehip bag, and pomegranate blossom teas, were antagonistic. The results of the time kill curve analyses showed that none of the herbal teas were bactericidal in their usage concentrations; however, in combination they were. Discussion: Some herbal teas, particularly rosehip and pomegranate blossom should be avoided because of antagonistic interactions during the course of antibiotic treatment or should be consumed alone.


2001 ◽  
Vol 45 (4) ◽  
pp. 1244-1248 ◽  
Author(s):  
Virginie Zarrouk ◽  
Bülent Bozdogan ◽  
Roland Leclercq ◽  
Louis Garry ◽  
Celine Feger ◽  
...  

ABSTRACT We evaluated the activities of quinupristin-dalfopristin (Q-D), alone or in combination with rifampin, against three strains ofStaphylococcus aureus susceptible to rifampin (MIC, 0.06 μg/ml) and to Q-D (MICs, 0.5 to 1 μg/ml) but displaying various phenotypes of resistance to macrolide-lincosamide-streptogramin antibiotics: S. aureus HM1054 was susceptible to quinupristin and dalfopristin (MICs of 8 and 4 μg/ml, respectively); for S. aureus RP13, the MIC of dalfopristin was high (MICs of quinupristin and dalfopristin for strain RP13, 8 and 32 μg/ml, respectively); and S. aureus HM1054R was obtained after conjugative transfer of macrolide-lincosamide-streptogramin B constitutive resistance to HM1054, and the MIC of quinupristin for this strain was high (MICs of quinupristin and dalfopristin, 64 and 4 μg/ml, respectively). In vitro time-kill curve studies showed no difference between Q-D and rifampin, at a concentration of four times the MIC, against the three strains. Rabbits with aortic endocarditis were treated 4 days with Q-D, rifampin, or their combination. In vivo, the combination was highly bactericidal and synergistic against strains susceptible to quinupristin (HM1054 and RP13) and sterilized 94% of the animals. In contrast, the combination was neither synergistic nor bactericidal against the quinupristin-resistant strain (HM1054R) and did not prevent the emergence of mutants resistant to rifampin. We conclude that the in vivo synergistic and bactericidal activity of the combination of Q-D and rifampin against S. aureus is predicted by the absence of resistance to quinupristin but not by in vitro combination studies.


2005 ◽  
Vol 49 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Cédric Jacqueline ◽  
Dominique Navas ◽  
Eric Batard ◽  
Anne-Françoise Miegeville ◽  
Virginie Le Mabecque ◽  
...  

ABSTRACT Indifference or moderate antagonism of linezolid combined with other antibiotics in vitro and in vivo have mainly been reported in the literature. We have assessed the in vitro activities of linezolid, alone or in combination with imipenem, against methicillin-resistant Staphylococcus aureus (MRSA) strains using the dynamic checkerboard and time-kill curve methods. Linezolid and low concentrations of imipenem had a synergistic effect, leading us to evaluate the in vivo antibacterial activity of the combination using the rabbit endocarditis experimental model. Two MRSA strains were used for in vivo experiments: one was a heterogeneous glycopeptide-intermediate clinical S. aureus strain isolated from blood cultures, and the other was the S. aureus COL reference strain. Animals infected with one of two MRSA strains were randomly assigned to one of the following treatments: no treatment (controls), linezolid (simulating a dose in humans of 10 mg/kg of body weight every 12 h), a constant intravenous infusion of imipenem (which allowed the steady-state concentration of about 1/32 the MIC of imipenem for each strain to be reached in serum), or the combination of both treatments. Linezolid and imipenem as monotherapies exhibited no bactericidal activity against either strain. The combination of linezolid plus imipenem showed in vivo bactericidal activity that corresponded to a decrease of at least 4.5 log CFU/g of vegetation compared to the counts for the controls. In conclusion, the combination exhibited synergistic and bactericidal activities against two MRSA strains after 5 days of treatment. The combination of linezolid plus imipenem appears to be promising for the treatment of severe MRSA infections and merits further investigations to explore the mechanism underlying the synergy between the two drugs.


2007 ◽  
Vol 56 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Xin-Yi Yang ◽  
Cong-Ran Li ◽  
Ren-Hui Lou ◽  
Yue-Ming Wang ◽  
Wei-Xin Zhang ◽  
...  

Lysostaphin is a glycylglycine endopeptidase. It cleaves the pentaglycine cross-bridge structure unique to the staphylococcal cell wall and is considered to be a potential drug for Staphylococcus aureus. In the present study, the in vitro activity of recombinant lysostaphin was investigated in 257 S. aureus isolates collected from hospital patients in Beijing, China, by determination of MIC and minimum bactericidal concentration (MBC) and a time–kill curve test. An agar dilution method was used for MIC determination in all of the isolates and a macrobroth dilution method was employed to verify MIC values for a subset of the isolates. All of the S. aureus strains were sensitive to the recombinant lysostaphin with MICs ranging from 0.03 to 2 μg ml−1 in the agar dilution assay. The antibacterial activity of lysostaphin was greater than that of vancomycin and other reference agents. For most of the isolates, the MICs from the agar dilution method were higher than those from the broth dilution method. The MBCs of lysostaphin in the test isolates were between 1- and 8-fold higher than their MIC values. Bactericidal activity (>99.9 % reduction) was observed after 2 h exposure of the isolates to lysostaphin at concentrations of ⩾0.5 MIC. Lysostaphin showed a rapid bactericidal activity against the test strains of meticillin-susceptible S. aureus and meticillin-resistant S. aureus. Its activity at ⩾0.5 MIC was sustained for at least 6 h. These results will be informative for the clinical application and evaluation of lysostaphin.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 696 ◽  
Author(s):  
Jacinda C. Abdul-Mutakabbir ◽  
Razieh Kebriaei ◽  
Kyle C. Stamper ◽  
Zain Sheikh ◽  
Philip T. Maassen ◽  
...  

The most efficacious antimicrobial therapy to aid in the successful elimination of resistant S. aureus infections is unknown. In this study, we evaluated varying phenotypes of S. aureus against dalbavancin (DAL), vancomycin (VAN), and daptomycin (DAP) alone and in combination with cefazolin (CFZ). The objective of this study was to observe whether there was a therapeutic improvement in adding a beta-lactam to a glycopeptide, lipopeptide, or a lipoglycopeptide. We completed a series of in vitro tests including minimum inhibitory concentration testing (MIC) of the antimicrobials in combination, time-kill analysis (TKA), and a 168 h (7-day) one-compartment pharmacokinetic/pharmacodynamic (PK/PD) model on two daptomycin non-susceptible (DNS), vancomycin intermediate S. aureus strains (VISA), D712 and 6913. Results from our MIC testing demonstrated a minimum 2-fold and a maximum 32-fold reduction in MIC values for DAL, VAN, and DAP in combination with CFZ, in contrast to either agent used alone. The TKAs completed on four strains paralleled the enhanced activity demonstrated via the combination MICs. In the one-compartment PK/PD models, the combination of DAP plus CFZ or VAN plus CFZ resulted in a significant (p < 0.001) improvement in bactericidal activity and overall reduction in CFU/ml over the 7-day period. While the addition of CFZ to DAL improved time to bactericidal activity, DAL alone demonstrated equal and more sustained overall activity compared to all other treatments. The use of DAL alone, with or without CFZ and the combinations of VAN or DAP with CFZ appear to result in increased bactericidal activity against various recalcitrant S. aureus phenotypes.


2016 ◽  
Vol 60 (7) ◽  
pp. 4342-4345 ◽  
Author(s):  
Adam Belley ◽  
David Lalonde Seguin ◽  
Francis Arhin ◽  
Greg Moeck

ABSTRACTAntibacterial agents that kill nondividing bacteria may be of utility in treating persistent infections. Oritavancin and dalbavancin are bactericidal lipoglycopeptides that are approved for acute bacterial skin and skin structure infections in adults caused by susceptible Gram-positive pathogens. Using time-kill methodology, we demonstrate that oritavancin exerts bactericidal activity against methicillin-resistantStaphylococcus aureus(MRSA) isolates that are maintained in a nondividing statein vitro, whereas dalbavancin and the glycopeptide vancomycin do not.


2009 ◽  
Vol 53 (10) ◽  
pp. 4495-4497 ◽  
Author(s):  
Shveta Rani Singh ◽  
Alfred E. Bacon ◽  
David C. Young ◽  
Kimberly A. Couch

ABSTRACT Many clinicians are trying unique strategies, including vancomycin and linezolid in combination, for treatment of patients who do not respond to conventional therapy against methicillin (meticillin)-resistant Staphylococcus aureus. In our study, which illustrated in vitro activity only, no synergistic activity was seen when the two agents were combined. Conversely, antagonistic activity occurred in three of five strains when linezolid was added to vancomycin. Our results indicate that vancomycin and linezolid in combination should be avoided.


2008 ◽  
Vol 52 (4) ◽  
pp. 1533-1537 ◽  
Author(s):  
Brian T. Tsuji ◽  
Christof von Eiff ◽  
Pamela A. Kelchlin ◽  
Alan Forrest ◽  
Patrick F. Smith

ABSTRACT The in vitro bactericidal activities of vancomycin against Staphylococcus aureus hemB mutants displaying the small-colony-variant phenotype and their parental strains were evaluated. Vancomycin killing activities against hemB mutants were markedly attenuated, demonstrating approximately 50% less effect, a result which was well described by a Hill-type pharmacodynamic model.


1997 ◽  
Vol 41 (11) ◽  
pp. 2527-2532 ◽  
Author(s):  
M Manduru ◽  
L B Mihm ◽  
R L White ◽  
L V Friedrich ◽  
P A Flume ◽  
...  

Bactericidal activity, historically assessed by in vitro tests which employ fixed drug concentrations, may also be evaluated in in vitro pharmacodynamic models in which in vivo pharmacokinetics and bacterial growth conditions can be simulated. However, systematic comparisons between the two methods are lacking. We evaluated the bactericidal activities of ceftazidime, at two different concentration/MIC ratios (C/MICs), against 10 clinical isolates of Pseudomonas aeruginosa in a two-compartment model with continuous-infusion conditions and a 2-h half-life. These values were compared to those determined by traditional 24-h time-kill (TTK) methods at the same C/MICs. Bactericidal activities were compared by using area under the colony count-time curves. Antibiotic exposure (area under the drug concentration-time curve) was also evaluated. Although bactericidal activity appeared greater by the TTK method (P = 0.05), when it was normalized for drug exposure, these differences disappeared (P = 0.2). This disparity was likely due to differences in drug exposure in the TTK method and in the peripheral compartment of the model (site of bacteria) over the first 8 h of the experiment, during which the antibiotic accumulated to target concentrations. This suggests that the bactericidal effects with constant antibiotic concentrations are similar in the two methods; however, this may not hold true with fluctuating drug concentrations. Further, results from the pharmacodynamic model may theoretically be more relevant, as in vivo pharmacokinetics and bacterial growth conditions call be more faithfully simulated.


Sign in / Sign up

Export Citation Format

Share Document