scholarly journals Biochemical Characterization of the FEZ-1 Metallo-β-Lactamase of Legionella gormanii ATCC 33297T Produced in Escherichia coli

2001 ◽  
Vol 45 (4) ◽  
pp. 1254-1262 ◽  
Author(s):  
Paola Sandra Mercuri ◽  
Fabrice Bouillenne ◽  
Letizia Boschi ◽  
Josette Lamotte-Brasseur ◽  
Gianfranco Amicosante ◽  
...  

ABSTRACT The bla FEZ-1 gene coding for the metallo-β-lactamase of Legionella (Fluoribacter) gormaniiATCC 33297T was overexpressed via a T7 expression system inEscherichia coli BL21(DE3)(pLysS). The product was purified to homogeneity in two steps with a yield of 53%. The FEZ-1 metallo-β-lactamase exhibited a broad-spectrum activity profile, with a preference for cephalosporins such as cephalothin, cefuroxime, and cefotaxime. Monobactams were not hydrolyzed. The β-lactamase was inhibited by metal chelators. FEZ-1 is a monomeric enzyme with a molecular mass of 29,440 Da which possesses two zinc-binding sites. Its zinc content did not vary in the pH range of 5 to 9, but the presence of zinc ions modified the catalytic efficiency of the enzyme. A model of the FEZ-1 three-dimensional structure was built.

1999 ◽  
Vol 43 (4) ◽  
pp. 902-906 ◽  
Author(s):  
Nezha Laraki ◽  
Nicola Franceschini ◽  
Gian Maria Rossolini ◽  
Pasqualino Santucci ◽  
Cécile Meunier ◽  
...  

ABSTRACT The bla IMP gene coding for the IMP-1 metallo-β-lactamase produced by a Pseudomonas aeruginosaclinical isolate (isolate 101/1477) was overexpressed via a T7 expression system in Escherichia coli BL21(DE3), and its product was purified to homogeneity with a final yield of 35 mg/liter of culture. The structural and functional properties of the enzyme purified from E. coli were identical to those of the enzyme produced by P. aeruginosa. The IMP-1 metallo-β-lactamase exhibits a broad-spectrum activity profile that includes activity against penicillins, cephalosporins, cephamycins, oxacephamycins, and carbapenems. Only monobactams escape its action. The enzyme activity was inhibited by metal chelators, of which 1,10-o-phenanthroline and dipicolinic acid were the most efficient. Two zinc-binding sites were found. The zinc content of the P. aeruginosa 101/1477 metallo-β-lactamase was not pH dependent.


2008 ◽  
Vol 53 (1) ◽  
pp. 323-326 ◽  
Author(s):  
Hedi Mammeri ◽  
Moreno Galleni ◽  
Patrice Nordmann

ABSTRACT Two AmpC variants harboring the S287N substitution were obtained by mutagenesis from cephalosporinases representative of the phylogenetic groups A and B2 of Escherichia coli. Their biochemical characterization revealed that the S287N replacement led to an important increase in the catalytic efficiency toward extended-spectrum cephalosporins in the AmpC β-lactamase of group A only.


2016 ◽  
Vol 82 (16) ◽  
pp. 4975-4981 ◽  
Author(s):  
Lorena Rodríguez-Rubio ◽  
Hans Gerstmans ◽  
Simon Thorpe ◽  
Stéphane Mesnage ◽  
Rob Lavigne ◽  
...  

ABSTRACTBacteriophage-encoded endolysins are highly diverse enzymes that cleave the bacterial peptidoglycan layer. Current research focuses on their potential applications in medicine, in food conservation, and as biotechnological tools. Despite the wealth of applications relying on the use of endolysin, little is known about the enzymatic properties of these enzymes, especially in the case of endolysins of bacteriophages infecting Gram-negative species. Automated genome annotations therefore remain to be confirmed. Here, we report the biochemical analysis and cleavage site determination of a novelSalmonellabacteriophage endolysin, Gp110, which comprises an uncharacterizeddomain ofunknownfunction (DUF3380; pfam11860) in its C terminus and shows a higher specific activity (34,240 U/μM) than that of 14 previously characterized endolysins active against peptidoglycan from Gram-negative bacteria (corresponding to 1.7- to 364-fold higher activity). Gp110 is a modular endolysin with an optimal pH of enzymatic activity of pH 8 and elevated thermal resistance. Reverse-phase high-performance liquid chromatography (RP-HPLC) analysis coupled to mass spectrometry showed that DUF3380 hasN-acetylmuramidase (lysozyme) activity cleaving the β-(1,4) glycosidic bond betweenN-acetylmuramic acid andN-acetylglucosamine residues. Gp110 is active against directly cross-linked peptidoglycans with various peptide stem compositions, making it an attractive enzyme for developing novel antimicrobial agents.IMPORTANCEWe report the functional and biochemical characterization of theSalmonellaphage endolysin Gp110. This endolysin has a modular structure with an enzymatically active domain and a cell wall binding domain. The enzymatic activity of this endolysin exceeds that of all other endolysins previously characterized using the same methods. A domain of unknown function (DUF3380) is responsible for this high enzymatic activity. We report that DUF3380 hasN-acetylmuramidase activity against directly cross-linked peptidoglycans with various peptide stem compositions. This experimentally verified activity allows better classification and understanding of the enzymatic activities of endolysins, which mostly are inferred by sequence similarities. Three-dimensional structure predictions for Gp110 suggest a fold that is completely different from that of known structures of enzymes with the same peptidoglycan cleavage specificity, making this endolysin quite unique. All of these features, combined with increased thermal resistance, make Gp110 an attractive candidate for engineering novel endolysin-based antibacterials.


2020 ◽  
Vol 86 (7) ◽  
Author(s):  
Dolores Linde ◽  
Andrés Olmedo ◽  
Alejandro González-Benjumea ◽  
María Estévez ◽  
Chantal Renau-Mínguez ◽  
...  

ABSTRACT Unspecific peroxygenases (UPOs) constitute a new family of fungal heme-thiolate enzymes in which there is high biotechnological interest. Although several thousand genes encoding hypothetical UPO-type proteins have been identified in sequenced fungal genomes and other databases, only a few UPO enzymes have been experimentally characterized to date. Therefore, gene screening and heterologous expression from genetic databases are a priority in the search for ad hoc UPOs for oxyfunctionalization reactions of interest. Very recently, Escherichia coli production of a previously described basidiomycete UPO (as a soluble and active enzyme) has been reported. Here, we explored this convenient heterologous expression system to obtain the protein products from available putative UPO genes. In this way, two UPOs from the ascomycetes Collariella virescens (syn., Chaetomium virescens) and Daldinia caldariorum were successfully obtained, purified, and characterized. Comparison of their kinetic constants for oxidation of model substrates revealed 10- to 20-fold-higher catalytic efficiency of the latter enzyme in oxidizing simple aromatic compounds (such as veratryl alcohol, naphthalene, and benzyl alcohol). Homology molecular models of these enzymes showed three conserved and two differing residues in the distal side of the heme (the latter representing two different positions of a phenylalanine residue). Interestingly, replacement of the C. virescens UPO Phe88 by the homologous residue in the D. caldariorum UPO resulted in an F88L variant with 5- to 21-fold-higher efficiency in oxidizing these aromatic compounds. IMPORTANCE UPOs catalyze regio- and stereoselective oxygenations of both aromatic and aliphatic compounds. Similar reactions were previously described for cytochrome P450 monooxygenases, but UPOs have the noteworthy biotechnological advantage of being stable enzymes requiring only H2O2 to be activated. Both characteristics are related to the extracellular nature of UPOs as secreted proteins. In the present study, the limited repertoire of UPO enzymes available for organic synthesis and other applications is expanded with the description of two new ascomycete UPOs obtained by Escherichia coli expression of the corresponding genes as soluble and active enzymes. Moreover, directed mutagenesis in E. coli, together with enzyme molecular modeling, provided relevant structure-function information on aromatic substrate oxidation by these two new biocatalysts.


1991 ◽  
Vol 221 (4) ◽  
pp. 1311-1324 ◽  
Author(s):  
Patrick Sodano ◽  
Tai-he Xia ◽  
John H. Bushweller ◽  
Olof Björnberg ◽  
Arne Holmgren ◽  
...  

Biochemistry ◽  
1995 ◽  
Vol 34 (11) ◽  
pp. 3502-3512 ◽  
Author(s):  
Giovanna Scapin ◽  
John S. Blanchard ◽  
James C. Sacchettini

1997 ◽  
Vol 327 (3) ◽  
pp. 847-851 ◽  
Author(s):  
Zengji LI ◽  
Yue SUN ◽  
L. David THURLOW

Twenty-one RNA minihelices, resembling the coaxially stacked acceptor- /T-stems and T-loop found along the top of a tRNA's three-dimensional structure, were synthesized and used as substrates for ATP/CTP:tRNA nucleotidyltransferases from Escherichia coli and Saccharomyces cerevisiae. The sequence of nucleotides in the loop varied at positions corresponding to residues 56, 57 and 58 in the T-loop of a tRNA. All minihelices were substrates for both enzymes, and the identity of bases in the loop affected the interaction. In general, RNAs with purines in the loop were better substrates than those with pyrimidines, although no single base identity absolutely determined the effectiveness of the RNA as substrate. RNAs lacking bases near the 5ʹ-end were good substrates for the E. coli enzyme, but were poor substrates for that from yeast. The apparent Km values for selected minihelices were 2-3 times that for natural tRNA, and values for apparent Vmax were lowered 5-10-fold.


Sign in / Sign up

Export Citation Format

Share Document