scholarly journals Macrolide Resistance in Campylobacter jejuni and Campylobacter coli: Molecular Mechanism and Stability of the Resistance Phenotype

2005 ◽  
Vol 49 (7) ◽  
pp. 2753-2759 ◽  
Author(s):  
Amera Gibreel ◽  
Veronica N. Kos ◽  
Monika Keelan ◽  
Cathy A. Trieber ◽  
Simon Levesque ◽  
...  

ABSTRACT A collection of 23 macrolide-resistant Campylobacter isolates from different geographic areas was investigated to determine the mechanism and stability of macrolide resistance. The isolates were identified as Campylobacter jejuni or Campylobacter coli based on the results of the hippurate biochemical test in addition to five PCR-based genotypic methods. Three point mutations at two positions within the peptidyl transferase region in domain V of the 23S rRNA gene were identified. About 78% of the resistant isolates exhibited an A→G transition at Escherichia coli equivalent base 2059 of the 23S rRNA gene. The isolates possessing this mutation showed a wide range of erythromycin and clarithromycin MICs. Thus, this mutation may incur a greater probability of treatment failure in populations infected by resistant Campylobacter isolates. Another macrolide-associated mutation (A→C transversion), at E. coli equivalent base 2058, was detected in about 13% of the isolates. An A→G transition at a position cognate with E. coli 23S rRNA base 2058, which is homologous to the A2142G mutation commonly described in Helicobacter pylori, was also identified in one of the C. jejuni isolates examined. In the majority of C. jejuni isolates, the mutations in the 23S rRNA gene were homozygous except in two cases where the mutation was found in two of the three copies of the target gene. Natural transformation demonstrated the transfer of the macrolide resistance phenotype from a resistant Campylobacter isolate to a susceptible Campylobacter isolate. Growth rates of the resulting transformants containing A-2058→C or A-2059→G mutations were similar to that of the parental isolate. The erythromycin resistance of six of seven representative isolates was found to be stable after successive subculturing in the absence of erythromycin selection pressure regardless of the resistance level, the position of the mutation, or the number of the mutated copies of the target gene. One C. jejuni isolate showing an A-2058→G mutation, however, reverted to erythromycin and clarithromycin susceptibility after 55 subcultures on erythromycin-free medium. Investigation of ribosomal proteins L4 and L22 by sequence analysis in five representative isolates of C. jejuni and C. coli demonstrated no significant macrolide resistance-associated alterations in either the L4 or the L22 protein that might explain either macrolide resistance or enhancement of the resistance level.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Bai Wei ◽  
Min Kang

We investigated the molecular mechanisms underlying macrolide resistance in 38 strains ofCampylobacterisolated from poultry. Twenty-seven strains were resistant to azithromycin and erythromycin, five showed intermediate azithromycin resistance and erythromycin susceptibility, and six showed azithromycin resistance and erythromycin susceptibility. FourCampylobacter jejuniand sixCampylobacter colistrains had azithromycin MICs which were 8–16 and 2–8-fold greater than those of erythromycin, respectively. The A2075G mutation in the 23S rRNA gene was detected in 11 resistant strains with MICs ranging from 64 to ≥ 512μg/mL. Mutations including V137A, V137S, and a six-amino acid insertion (114-VAKKAP-115) in ribosomal protein L22 were detected in theC. jejunistrains. Erythromycin ribosome methylase B-erm(B) was not detected in any strain. All strains except three showed increased susceptibility to erythromycin with twofold to 256-fold MIC change in the presence of phenylalanine arginine ß-naphthylamide (PAßN); the effects of PAßN on azithromycin MICs were limited in comparison to those on erythromycin MICs, and 13 strains showed no azithromycin MIC change in the presence of PAßN. Differences between azithromycin and erythromycin resistance and macrolide resistance phenotypes and genotypes were observed even in highly resistant strains. Further studies are required to better understand macrolide resistance inCampylobacter.


2013 ◽  
Vol 76 (8) ◽  
pp. 1451-1455 ◽  
Author(s):  
KINGA WIECZOREK ◽  
IWONA KANIA ◽  
JACEK OSEK

The purpose of the present study was to determine the prevalence of Campylobacter in poultry carcasses at slaughter in Poland. For the isolated strains, resistance to selected antibiotics and the associated genetic determinants were identified. A total of 498 Campylobacter isolates were obtained from 802 poultry samples during the 2-year study period. Strains were identified to species with the PCR method; 53.6% of the strains were Campylobacter jejuni and 46.4% were Campylobacter coli. A high percentage of the tested Campylobacter strains were resistant to ciprofloxacin and nalidixic acid (74.1 and 73.5%, respectively) followed by tetracycline (47.4%) and streptomycin (20.5%). Only one C. jejuni and two C. coli isolates were resistant to gentamicin. Seventy-nine (15.9%) of the 498 strains were resistant to three or more classes of antibiotics examined. Higher levels of resistance, irrespective of the antimicrobial agent tested, were found within the C. coli group. Almost all strains resistant to quinolones (99.5%) and to tetracycline (99.6%) carried the Thr-86-to-Ile mutation in the gyrA gene and possessed the tet(O) marker, respectively. All isolates resistant to erythromycin had the A2075G mutation in the 23S rRNA gene. These results reveal that poultry carcasses in Poland are a reservoir of potentially pathogenic and antimicrobial-resistant Campylobacter strains for humans, which may pose a public health risk.


2012 ◽  
Vol 57 (3) ◽  
pp. 1369-1378 ◽  
Author(s):  
Haihong Hao ◽  
Zonghui Yuan ◽  
Zhangqi Shen ◽  
Jing Han ◽  
Orhan Sahin ◽  
...  

ABSTRACTMacrolide antibiotics are important for clinical treatment of infections caused byCampylobacter jejuni. Development of resistance to this class of antibiotics inCampylobacteris a complex process, and the dynamic molecular changes involved in this process remain poorly defined. Multiple lineages of macrolide-resistant mutants were selected by stepwise exposure ofC. jejunito escalating doses of erythromycin or tylosin. Mutations in target genes were determined by DNA sequencing, and the dynamic changes in the expression of antibiotic efflux transporters and the transcriptome ofC. jejuniwere examined by real-time reverse transcription-PCR, immunoblotting, and DNA microarray analysis. Multiple types of mutations in ribosomal proteins L4 and L22 occurred early during stepwise selection. On the contrary, the mutations in the 23S rRNA gene, mediating high resistance to macrolides, were observed only in the late-stage mutants. Upregulation of antibiotic efflux genes was observed in the intermediately resistant mutants, and the magnitude of upregulation declined with the occurrence of mutations in the 23S rRNA gene. DNA microarray analysis revealed the differential expression of 265 genes, most of which occurred in the intermediate mutant, including the upregulation of genes encoding ribosomal proteins and the downregulation of genes involved in energy metabolism and motility. These results indicate (i) that mutations in L4 and L22 along with temporal overexpression of antibiotic efflux genes precede and may facilitate the development of high-level macrolide resistance and (ii) that the development of macrolide resistance affects the pathways important for physiology and metabolism inC. jejuni, providing an explanation for the reduced fitness of macrolide-resistantCampylobacter.


2005 ◽  
Vol 49 (1) ◽  
pp. 457-460 ◽  
Author(s):  
Marjo Haanperä ◽  
Pentti Huovinen ◽  
Jari Jalava

ABSTRACT A pyrosequencing method for detection and quantification of macrolide resistance mutations at positions 2058 and 2059 (Escherichia coli numbering) of the 23S rRNA gene is described. The method was developed and tested for Streptococcus pneumoniae, Streptococcus pyogenes, Mycobacterium avium, Campylobacter jejuni, and Haemophilus influenzae.


2011 ◽  
Vol 55 (12) ◽  
pp. 5939-5941 ◽  
Author(s):  
Mirva Lehtopolku ◽  
Pirkko Kotilainen ◽  
Marjo Haanperä-Heikkinen ◽  
Ulla-Maija Nakari ◽  
Marja-Liisa Hänninen ◽  
...  

ABSTRACTThe aim of this study was to examine macrolide resistance mutations inCampylobacterspecies. In 76 strains studied, point mutation A to G at position 2059 of the 23S rRNA gene was detected in 30 of the 33 erythromycin-resistant strains. An amino acid insertion in the ribosomal protein L22 was found in one resistant strain without a 23S rRNA mutation. The A2059G mutation is the main cause of macrolide resistance inCampylobacterspecies.


2010 ◽  
Vol 76 (19) ◽  
pp. 6377-6386 ◽  
Author(s):  
Simone E. Wirz ◽  
Gudrun Overesch ◽  
Peter Kuhnert ◽  
Bożena M. Korczak

ABSTRACT To obtain genetic information about Campylobacter jejuni and Campylobacter coli from broilers and carcasses at slaughterhouses, we analyzed and compared 340 isolates that were collected in 2008 from the cecum right after slaughter or from the neck skin after processing. We performed rpoB sequence-based identification, multilocus sequence typing (MLST), and flaB sequence-based typing; we additionally analyzed mutations within the 23S rRNA and gyrA genes that confer resistance to macrolide and quinolone antibiotics, respectively. The rpoB-based identification resulted in a distribution of 72.0% C. jejuni and 28.0% C. coli. The MLST analysis revealed that there were 59 known sequence types (STs) and 6 newly defined STs. Most of the STs were grouped into 4 clonal complexes (CC) that are typical for poultry (CC21, CC45, CC257, and CC828), and these represented 61.8% of all of the investigated isolates. The analysis of 95 isolates from the cecum and from the corresponding carcass neck skin covered 44 different STs, and 54.7% of the pairs had matching genotypes. The data indicate that cross-contamination from various sources during slaughter may occur, although the majority of Campylobacter contamination on carcasses appeared to originate from the slaughtered flock itself. Mutations in the 23S rRNA gene were found in 3.1% of C. coli isolates, although no mutations were found in C. jejuni isolates. Mutations in the gyrA gene were observed in 18.9% of C. jejuni and 26.8% of C. coli isolates, which included two C. coli strains that carried mutations conferring resistance to both classes of antibiotics. A relationship between specific genotypes and antibiotic resistance/susceptibility was observed.


2006 ◽  
Vol 72 (2) ◽  
pp. 1316-1321 ◽  
Author(s):  
Joo-Sung Kim ◽  
Donna K. Carver ◽  
Sophia Kathariou

ABSTRACT Erythromycin resistance in Campylobacter coli from meat animals is frequently encountered and could represent a substantial barrier to antibiotic treatment of human infections. Erythromycin resistance in this organism has been associated with a point mutation (A2075G) in the 23S rRNA gene. However, the mechanisms responsible for possible dissemination of erythromycin resistance in C. coli remain poorly understood. In this study, we investigated transformation-mediated acquisition of erythromycin resistance by genotypically diverse C. coli strains from turkeys and swine, with total genomic DNA from erythromycin-resistant C. coli of either turkey or swine origin used as a donor. Overall, transformation to erythromycin resistance was significantly more frequent in C. coli strains from turkeys than in swine-derived strains (P < 0.01). The frequency of transformation to erythromycin resistance was 10−5 to 10−6 for turkey-derived strains but 10−7 or less for C. coli from swine. Transformants harbored the point mutation A2075G in the 23S rRNA gene, as did the erythromycin-resistant strains used as DNA donors. Erythromycin resistance was stable in transformants following serial transfers in the absence of the antibiotic, and most transformants had high MICs (>256 μg/ml), as did the C. coli donor strains. In contrast to the results obtained with transformation, spontaneous mutants had relatively low erythromycin MICs (32 to 64 μg/ml) and lacked the A2075G mutation in the 23S rRNA gene. These findings suggest that natural transformation has the potential to contribute to the dissemination of high-level resistance to erythromycin among C. coli strains colonizing meat animals.


2003 ◽  
Vol 47 (10) ◽  
pp. 3053-3060 ◽  
Author(s):  
Kevin A. Nash

ABSTRACT High-level, acquired macrolide resistance in mycobacteria is conferred by mutation within the 23S rRNA gene. However, several mycobacteria are naturally resistant to macrolides, including the Mycobacterium smegmatis group and Mycobacterium tuberculosis complex. Thus, the aim of this study was to characterize this resistance. Intrinsic macrolide resistance in M. smegmatis was inducible and showed cross-resistance to lincosamides but not to streptogramin B (i.e., ML resistance). A similar phenotype was found with Mycobacterium microti and macrolide-resistant Mycobacterium fortuitum. A search of the DNA sequence data for M. smegmatis strain mc2155 identified a novel erm gene, erm(38), and expression analysis showed that erm(38) RNA levels increased >10-fold after a 2-h incubation with macrolide. Inducible ML resistance was not expressed by an erm(38) knockout mutant, and complementation of this mutant with intact erm(38) in trans resulted in high-level ML resistance (e.g., clarithromycin MIC of >512 μg/ml). Thus, the results indicate that erm(38) confers the intrinsic ML resistance of M. smegmatis. Southern blot analysis with an erm(38)-specific probe indicated that a similar gene may be present in macrolide-resistant M. fortuitum. This finding, with the presence of the erm(37) gene (Rv1988) in the M. tuberculosis complex, suggests that such genes are widespread in mycobacteria with intrinsic macrolide resistance.


2014 ◽  
Vol 63 (2) ◽  
pp. 242-247 ◽  
Author(s):  
Shotaro Nonaka ◽  
Kosuke Matsuzaki ◽  
Tomoya Kazama ◽  
Hiroyuki Nishiyama ◽  
Yoko Ida ◽  
...  

We investigated antimicrobial susceptibility and the molecular mechanism involved in conferring high-level macrolide resistance in 47 clinical isolates of Moraxella nonliquefaciens from Japan. Antimicrobial susceptibility was determined using Etest and agar dilution methods. Thirty-two erythromycin-non-susceptible strains were evaluated for the possibility of clonal spreading, using PFGE. To analyse the mechanism related to macrolide resistance, mutations in the 23S rRNA gene and the ribosomal proteins, and the presence of methylase genes were investigated by PCR and sequencing. The efflux system was examined using appropriate inhibitors. Penicillin, ampicillin, amoxicillin, cefixime, levofloxacin and antimicrobials containing β-lactamase inhibitors showed strong activity against 47 M. nonliquefaciens isolates. Thirty-two (68.1 %) of the 47 isolates showed high-level MICs to macrolides (MIC ≥128 mg l−1) and shared the A2058T mutation in the 23S rRNA gene. The geometric mean MIC to macrolides of A2058T-mutated strains was significantly higher than that of WT strains (P<0.0001). Thirty-two isolates with high-level macrolide MICs clustered into 30 patterns on the basis of the PFGE dendrogram, indicating that the macrolide-resistant strains were not clonal. In contrast, no common mutations of the ribosomal proteins or methylase genes, or overproduction of the efflux system were observed in A2058T-mutated strains. Moreover, of the 47 M. nonliquefaciens strains, 43 (91.5 %) were bro-1 and 4 (8.5 %) were bro-2 positive. Our results suggest that most M. nonliquefaciens clinical isolates show high-level macrolide resistance conferred by the A2058T mutation in the 23S rRNA gene. This study represents the first characterization of M. nonliquefaciens.


Sign in / Sign up

Export Citation Format

Share Document