spontaneous mutants
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 11)

H-INDEX

33
(FIVE YEARS 3)

Author(s):  
Sarah Kiener ◽  
Ana Rostaher ◽  
Silvia Rüfenacht ◽  
Vidhya Jagannathan ◽  
John P. Sundberg ◽  
...  

AbstractInvestigations of hereditary phenotypes in spontaneous mutants may help to better understand the physiological functions of the altered genes. We investigated two unrelated domestic shorthair cats with bulbous swellings of the hair shafts. The clinical, histopathological, and ultrastructural features were similar to those in mice with lanceolate hair phenotype caused by loss-of-function variants in Dsg4 encoding desmoglein 4. We sequenced the genomes from both affected cats and compared the data of each affected cat to 61 control genomes. A search for private homozygous variants in the DSG4 candidate gene revealed independent frameshift variants in each case, c.76del or p.Ile26fsLeu*4 in case no. 1 and c.1777del or p.His593Thrfs*23 in case no. 2. DSG4 is a transmembrane glycoprotein located primarily in the extracellular part of desmosomes, a complex of adhesion molecules responsible for connecting the keratin intermediate filaments of neighbouring epithelial cells. Desmosomes are essential for normal hair shaft formation. Both identified DSG4 variants in the affected cats lead to premature stop codons and truncate major parts of the open-reading frame. We assume that this leads to a complete loss of DSG4 function, resulting in an incorrect formation of the desmosomes and causing the development of defective hair shafts. Together with the knowledge on the effects of DSG4 variants in other species, our data suggest that the identified DSG4 variants cause the hair shaft dystrophy. To the best of our knowledge, this study represents the first report of pathogenic DSG4 variants in domestic animals.


2021 ◽  
Author(s):  
Lin Zeng ◽  
Alejandro R. Walker ◽  
Kyulim Lee ◽  
Zachary A. Taylor ◽  
Robert A. Burne

Genetic truncations in a gene encoding a putative glucose-PTS protein ( manL , EIIAB Man ) were identified in subpopulations of two separate laboratory stocks of Streptococcus sanguinis SK36; the mutants had reduced PTS activities on glucose and other monosaccharides. To understand the emergence of these mutants, we engineered deletion mutants of manL and showed that the ManL-deficient strain had improved bacterial viability in stationary phase and was better able to inhibit the growth of the dental caries pathogen Streptococcus mutans . Transcriptional analysis and biochemical assays suggested that the manL mutant underwent reprograming of central carbon metabolism that directed pyruvate away from production of lactate, increasing production of hydrogen peroxide (H 2 O 2 ) and excretion of pyruvate. Addition of pyruvate to the medium enhanced the survival of SK36 in overnight cultures. Meanwhile, elevated pyruvate levels were detected in the cultures of a small, but significant percentage (∼10%), of clinical isolates of oral commensal bacteria. Furthermore, the manL mutant showed higher expression of the arginine deiminase system than the wild type, which enhanced the ability of the mutant to raise environmental pH when arginine was present. To our surprise, significant discrepancies in genome sequence were identified between strain SK36 obtained from ATCC and the sequence deposited in GenBank. As the conditions that are likely associated with the emergence of spontaneous manL mutations, i.e. excess carbohydrates and low pH, are those associated with caries development, we propose that the glucose-PTS strongly influences commensal-pathogen interactions by altering the production of ammonia, pyruvate, and H 2 O 2 . Importance A health-associated dental microbiome provides a potent defense against pathogens and diseases. Streptococcus sanguinis is an abundant member of a health-associated oral flora that antagonizes pathogens by producing hydrogen peroxide. There is a need for a better understanding of the mechanisms that allow bacteria to survive carbohydrate-rich and acidic environments associated with the development of dental caries. We report the isolation and characterization of spontaneous mutants of S. sanguinis with impairment in glucose transport. The resultant reprograming of central metabolism in these mutants reduced the production of lactic acid and increased pyruvate accumulation; the latter enables these bacteria to better cope with hydrogen peroxide and low pH. The implications of these discoveries in the development of dental caries are discussed.


2021 ◽  
Author(s):  
Lin Zeng ◽  
Alejandro R Walker ◽  
Kyulim Lee ◽  
Zachary A Taylor ◽  
Robert A Burne

Genetic truncations in a gene encoding a putative glucose-PTS protein (manL, EIIABMan) were identified in subpopulations of two separate laboratory stocks of Streptococcus sanguinis SK36; the mutants had reduced PTS activities on glucose and other monosaccharides. Using an engineered mutant of manL and its complemented derivative, we showed that the ManL-deficient strain had improved bacterial viability in stationary phase and was better able to inhibit the growth of the dental caries pathogen Streptococcus mutans. Transcriptional analysis and biochemical assays suggested that the manL mutant underwent reprograming of central carbon metabolism that directed pyruvate away from production of lactate, increasing production of hydrogen peroxide (H2O2) and excretion of pyruvate. Addition of pyruvate to the medium enhanced the survival of SK36 in overnight cultures. Meanwhile, elevated pyruvate levels were detected in the cultures of a small, but significant percentage (~10%), of clinical isolates of oral commensal bacteria. Furthermore, the manL mutant showed higher expression of the arginine deiminase system than the wild type, which enhanced the ability of the mutant to raise environmental pH when arginine was present. Significant discrepancies in genome sequence were identified between strain SK36 obtained from ATCC and the sequence deposited in GenBank. As the conditions that are likely associated with the emergence of spontaneous manL mutations, i.e. excess carbohydrates and low pH, are those associated with caries development, we propose that the glucose-PTS strongly influences commensal-pathogen interactions by altering the production of ammonia, pyruvate, and H2O2.


2021 ◽  
Vol 12 ◽  
Author(s):  
George W. Karpin ◽  
Joseph S. Merola ◽  
Joseph O. Falkinham

Spontaneous mutants of Mycobacterium smegmatis strain mc2155 resistant to 1-PG (iridium-L-phenylglycine complex), an antimycobacterial antibiotic, were isolated. Based on the discovery that some 1-PG-resistant mutants (1-PGR) were also resistant to high concentrations of clarithromycin (≥250 μg/ml), but no other anti-mycobacterial antibiotics, the 23S rRNA region spanning the peptidyl transferase domain was sequenced and mutations shown to be localized in the peptidyl transferase domain of the 23S rRNA gene. Measurements showed that 1-PG bound to ribosomes isolated from the 1-PG-sensitive parental strain, but the ribosome binding values for the 1-PGR mutant reduced.


2021 ◽  
Vol 10 (15) ◽  
Author(s):  
Tingting Xiang ◽  
Rui Liu ◽  
Jing Xu ◽  
Cailing Xu ◽  
Nuo Wang ◽  
...  

ABSTRACT Serratia marcescens SCQ1 is a red-pigmented bacterium isolated from silkworm larva with septicemia. Pigment-deficient spontaneous mutants arise when S. marcescens SCQ1 is incubated under relatively stable laboratory conditions for a long time. Here, we present the complete genome sequence of SCQ1 and the resequenced genomes of four spontaneous pigment mutants.


2020 ◽  
Vol 117 (46) ◽  
pp. 28735-28742
Author(s):  
Immacolata Speciale ◽  
Maria Elena Laugieri ◽  
Eric Noel ◽  
Sicheng Lin ◽  
Todd L. Lowary ◽  
...  

Paramecium bursariachlorella virus-1 (PBCV-1) is a large double-stranded DNA (dsDNA) virus that infects the unicellular green algaChlorella variabilisNC64A. Unlike many other viruses, PBCV-1 encodes most, if not all, of the enzymes involved in the synthesis of the glycans attached to its major capsid protein. Importantly, these glycans differ from those reported from the three domains of life in terms of structure and asparagine location in the sequon of the protein. Previous data collected from 20 PBCV-1 spontaneous mutants (or antigenic variants) suggested that thea064rgene encodes a glycosyltransferase (GT) with three domains, each with a different function. Here, we demonstrate that: domain 1 is a β-l-rhamnosyltransferase; domain 2 is an α-l-rhamnosyltransferase resembling only bacterial proteins of unknown function, and domain 3 is a methyltransferase that methylates the C-2 hydroxyl group of the terminal α-l-rhamnose (Rha) unit. We also establish that methylation of the C-3 hydroxyl group of the terminal α-l-Rha is achieved by another virus-encoded protein A061L, which requires an O-2 methylated substrate. This study, thus, identifies two of the glycosyltransferase activities involved in the synthesis of theN-glycan of the viral major capsid protein in PBCV-1 and establishes that a single protein A064R possesses the three activities needed to synthetize the 2-OMe-α-l-Rha-(1→2)-β-l-Rha fragment. Remarkably, this fragment can be attached to any xylose unit.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 603 ◽  
Author(s):  
Małgorzata Korycka-Machała ◽  
Jakub Pawełczyk ◽  
Paulina Borówka ◽  
Bożena Dziadek ◽  
Anna Brzostek ◽  
...  

We have recently found that selected thio-disaccharides possess bactericidal effects against Mycobacterium tuberculosis but not against Escherichia coli or Staphylococcus aureus. Here, we selected spontaneous mutants displaying resistance against the investigated thio-glycoside. According to next-generation sequencing, four of six analyzed mutants which were resistant to high concentrations of the tested chemical carried nonsynonymous mutations in the gene encoding the PPE51 protein. The complementation of these mutants with an intact ppe51 gene returned their sensitivity to the wild-type level. The uptake of tritiated thio-glycoside was significantly more abundant in wild-type Mycobacterium tuberculosis compared to the strain carrying the mutated ppe51 gene. The ppe51 mutations or CRISPR-Cas9-mediated downregulation of PPE51 expression affected the growth of mutant strains on minimal media supplemented with disaccharides (maltose or lactose) but not with glycerol or glucose as the sole carbon and energy source. Taking the above into account, we postulate that PPE51 participates in the uptake of disaccharides by tubercle bacilli.


2019 ◽  
Vol 67 (3) ◽  
pp. 192-201 ◽  
Author(s):  
Ignacio José Melero‐Jiménez ◽  
Elena Martín‐Clemente ◽  
María Jesús García‐Sánchez ◽  
Antonio Flores‐Moya ◽  
Elena Bañares‐España

Sign in / Sign up

Export Citation Format

Share Document