aromatic compound degradation
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 7)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 22 (13) ◽  
pp. 7003
Author(s):  
Sarah Vanwijnsberghe ◽  
Charlotte Peeters ◽  
Emmelie De Ridder ◽  
Charles Dumolin ◽  
Anneleen D. Wieme ◽  
...  

We performed a taxonomic and comparative genomics analysis of 67 novel Paraburkholderia isolates from forest soil. Phylogenetic analysis of the recA gene revealed that these isolates formed a coherent lineage within the genus Paraburkholderia that also included Paraburkholderiaaspalathi, Paraburkholderiamadseniana, Paraburkholderiasediminicola, Paraburkholderiacaffeinilytica, Paraburkholderiasolitsugae and Paraburkholderiaelongata and four unidentified soil isolates from earlier studies. A phylogenomic analysis, along with orthoANIu and digital DNA–DNA hybridization calculations revealed that they represented four different species including three novel species and P. aspalathi. Functional genome annotation of the strains revealed several pathways for aromatic compound degradation and the presence of mono- and dioxygenases involved in the degradation of the lignin-derived compounds ferulic acid and p-coumaric acid. This co-occurrence of multiple Paraburkholderia strains and species with the capacity to degrade aromatic compounds in pristine forest soil is likely caused by the abundant presence of aromatic compounds in decomposing plant litter and may highlight a diversity in micro-habitats or be indicative of synergistic relationships. We propose to classify the isolates representing novel species as Paraburkholderia domus with LMG 31832T (=CECT 30334) as the type strain, Paraburkholderia nemoris with LMG 31836T (=CECT 30335) as the type strain and Paraburkholderia haematera with LMG 31837T (=CECT 30336) as the type strain and provide an emended description of Paraburkholderia sediminicola Lim et al. 2008.


2021 ◽  
Vol 9 (6) ◽  
pp. 1123
Author(s):  
Hyun-Hee Lee ◽  
Jung-Wook Park ◽  
Hye-Jung Jung ◽  
Young-Su Seo

Burkholderia gladioli has high versatility and adaptability to various ecological niches. Here, we constructed a pan-genome using 14 genome sequences of B. gladioli, which originate from different niches, including gladiolus, rice, humans, and nature. Functional roles of core and niche-associated genomes were investigated by pathway enrichment analyses. Consequently, we inferred the uniquely important role of niche-associated genomes in (1) selenium availability during competition with gladiolus host; (2) aromatic compound degradation in seed-borne and crude oil-accumulated environments, and (3) stress-induced DNA repair system/recombination in the cystic fibrosis-niche. We also identified the conservation of the rhizomide biosynthetic gene cluster in all the B. gladioli strains and the concentrated distribution of this cluster in human isolates. It was confirmed the absence of complete CRISPR/Cas system in both plant and human pathogenic B. gladioli and the presence of the system in B. gladioli living in nature, possibly reflecting the inverse relationship between CRISPR/Cas system and virulence.


2021 ◽  
Vol 87 (6) ◽  
Author(s):  
Yan-Jie Hou ◽  
Yuan Guo ◽  
De-Feng Li ◽  
Ning-Yi Zhou

ABSTRACT Rieske nonheme iron oxygenases (ROs) catalyze the oxidation of a wide variety of substrates and play important roles in aromatic compound degradation and polycyclic aromatic hydrocarbon degradation. Those Rieske dioxygenases that usually act on hydrophobic substrates have been extensively studied and structurally characterized. Here, we report the crystal structure of a novel Rieske monooxygenase, NagGH, the oxygenase component of a salicylate 5-monooxygenase from Ralstonia sp. strain U2 that catalyzes the hydroxylation of a hydrophilic substrate salicylate (2-hydroxybenzoate), forming gentisate (2, 5-dihydroxybenzoate). The large subunit NagG and small subunit NagH share the same fold as that for their counterparts of Rieske dioxygenases and assemble the same α3β3 hexamer, despite that they share low (or no identity for NagH) sequence identities with these dioxygenase counterparts. A potential substrate-binding pocket was observed in the vicinity of the nonheme iron site. It featured a positively charged residue Arg323 that was surrounded by hydrophobic residues. The shift of nonheme iron atom caused by residue Leu228 disrupted the usual substrate pocket observed in other ROs. Residue Asn218 at the usual substrate pocket observed in other ROs was likewise involved in substrate binding and oxidation, yet residues Gln316 and Ser367, away from the usual substrate pocket of other ROs, were shown to play a more important role in substrate oxidation than Asn218. The unique binding pocket and unusual substrate-protein hydrophilic interaction provide new insights into Rieske monooxygenases. IMPORTANCE Rieske oxygenases are involved in the degradation of various aromatic compounds. These dioxygenases usually carry out hydroxylation of hydrophobic aromatic compounds and supply substrates with hydroxyl groups for extradiol/intradiol dioxygenases to cleave rings, and have been extensively studied. Salicylate 5-hydroxylase NagGH is a novel Rieske monooxygenase with high similarity to Rieske dioxygenases, and also shares reductase and ferredoxin similarity with a Rieske dioxygenase naphthalene 1,2-dioxygenase (NagAcAd) in Ralstonia sp. strain U2. The structure of NagGH, the oxygenase component of salicylate 5-monooxygenase, gives a representative of those monooxygenases and will help us understand the mechanism of their substrate binding and product regio-selectivity.


2021 ◽  
Vol 31 (1) ◽  
pp. 36-56
Author(s):  
Vanessa Schnaars ◽  
Lars Wöhlbrand ◽  
Sabine Scheve ◽  
Christina Hinrichs ◽  
Richard Reinhardt ◽  
...  

The genus Desulfonema belongs to the deltaproteobacterial family Desulfobacteraceae and comprises marine, sulfate-reducing bacteria that form filaments and move by gliding. This study reports on the complete, manually annotated genomes of Dn. limicola 5ac10T (6.91 Mbp; 6,207 CDS) and Dn. magnum 4be13T (8.03 Mbp; 9,970 CDS), integrated with substrate-specific proteome profiles (8 vs. 11). The richness in mobile genetic elements is shared with other Desulfobacteraceae members, corroborating horizontal gene transfer as major driver in shaping the genomes of this family. The catabolic networks of Dn. limicola and Dn. magnum have the following general characteristics: 98 versus 145 genes assigned (having genomic shares of 1.7 vs. 2.2%), 92.5 versus 89.7% proteomic coverage, and scattered gene clusters for substrate degradation and energy metabolism. The Dn. magnum typifying capacity for aromatic compound degradation (e.g., p-cresol, 3-phenylpropionate) requires 48 genes organized in operon-like structures (87.7% proteomic coverage; no homologs in Dn. limicola). The protein complements for aliphatic compound degradation, central pathways, and energy metabolism are highly similar between both genomes and were identified to a large extent (69–96%). The differential protein profiles revealed a high degree of substrate-specificity for peripheral reaction sequences (forming central intermediates), agreeing with the high number of sensory/regulatory proteins predicted for both strains. By contrast, central pathways and modules of the energy metabolism were constitutively formed under the tested substrate conditions. In accord with their natural habitats that are subject to fluctuating changes of physicochemical parameters, both Desulfonema strains are well equipped to cope with various stress conditions. Next to superoxide dismutase and catalase also desulfoferredoxin and rubredoxin oxidoreductase are formed to counter exposure to molecular oxygen. A variety of proteases and chaperones were detected that function in maintaining cellular homeostasis upon heat or cold shock. Furthermore, glycine betaine/proline betaine transport systems can respond to hyperosmotic stress. Gliding movement probably relies on twitching motility via type-IV pili or adventurous motility. Taken together, this proteogenomic study demonstrates the adaptability of Dn. limicola and Dn. magnum to its dynamic habitats by means of flexible catabolism and extensive stress response capacities.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243739
Author(s):  
Amanda Oliveira dos Santos Melo-Nascimento ◽  
Brena Mota Moitinho Sant´Anna ◽  
Carolyne Caetano Gonçalves ◽  
Giovanna Santos ◽  
Eliane Noronha ◽  
...  

Lignin is a recalcitrant macromolecule formed by three alcohols (monolignols) predominantly connected by β-aryl ether linkages and is one of the most abundant organic macromolecules in the biosphere. However, the role played by environmental bacteria in lignin degradation is still not entirely understood. In this study, we identified an environmental Klebsiella strain isolated from sediment collected from an altitudinal region in a unique Brazilian biome called Caatinga. This organism can also grow in the presence of kraft lignin as a sole source of carbon and aromatic compounds. We performed whole-genome sequencing and conducted an extensive genome-based metabolic reconstruction to reveal the potential mechanisms used by the bacterium Klebsiella variicola P1CD1 for lignin utilization as a carbon source. We identified 262 genes associated with lignin-modifying enzymes (LMEs) and lignin-degrading auxiliary enzymes (LDAs) required for lignin and aromatic compound degradation. The presence of one DyP (Dye-decolorizing Peroxidase) gene suggests the ability of P1CD1 strain to access phenolic and nonphenolic structures of lignin molecules, resulting in the production of catechol and protocatechuate (via vanillin or syringate) along the peripheral pathways of lignin degradation. K. variicola P1CD1 uses aldehyde-alcohol dehydrogenase to perform direct conversion of vanillin to protocatechol. The upper funneling pathways are linked to the central pathways of the protocatechuate/catechol catabolic branches via β-ketoadipate pathways, connecting the more abundant catabolized aromatic compounds with essential cellular functions, such as energy cellular and biomass production (i.e., via acetyl-CoA formation). The combination of phenotypic and genomic approaches revealed the potential dissimilatory and assimilatory ability of K. variicola P1CD1 to perform base-catalyzed lignin degradation, acting on high- and low-molecular-weight lignin fragments. These findings will be relevant for developing metabolic models to predict the ligninolytic mechanism used by environmental bacteria and shedding light on the flux of carbon in the soil.


2020 ◽  
Author(s):  
Xiuran Yin ◽  
Mingwei Cai ◽  
Yang Liu ◽  
Guowei Zhou ◽  
Tim Richter-Heitmann ◽  
...  

Abstract Asgard is a recently discovered archaeal superphylum, closely linked to the emergence of eukaryotes. Among Asgard archaea, Lokiarchaeota are abundant in marine sediments, but their in situ activities are largely unknown except for Candidatus ‘Prometheoarchaeum syntrophicum’. Here, we tracked the activity of Lokiarchaeota in incubations with Helgoland mud area sediments (North Sea) by stable isotope probing (SIP) with organic polymers, 13C-labelled inorganic carbon, fermentation intermediates and proteins. Within the active archaea, we detected members of the Lokiarchaeota class Loki-3, which appeared to mixotrophically participate in the degradation of lignin and humic acids while assimilating CO2, or heterotrophically used lactate. In contrast, members of the Lokiarchaeota class Loki-2 utilized protein and inorganic carbon, and degraded bacterial biomass formed in incubations. Metagenomic analysis revealed pathways for lactate degradation, and involvement in aromatic compound degradation in Loki-3, while the less globally distributed Loki-2 instead rely on protein degradation. We conclude that Lokiarchaeotal subgroups vary in their metabolic capabilities despite overlaps in their genomic equipment, and suggest that these subgroups occupy different ecologic niches in marine sediments.


Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 688 ◽  
Author(s):  
Kaminski ◽  
Sobczak ◽  
Dziembowski ◽  
Lipinski

Sphingopyxis inhabit diverse environmental niches, including marine, freshwater, oceans, soil and anthropogenic sites. The genus includes 20 phylogenetically distinct, valid species, but only a few with a sequenced genome. In this work, we analyzed the nearly complete genome of the newly described species, Sphingopyxis lindanitolerans, and compared it to the other available Sphingopyxis genomes. The genome included 4.3 Mbp in total and consists of a circular chromosome, and two putative plasmids. Among the identified set of lin genes responsible for γ-hexachlorocyclohexane pesticide degradation, we discovered a gene coding for a new isoform of the LinA protein. The significant potential of this species in the remediation of contaminated soil is also correlated with the fact that its genome encodes a higher number of enzymes potentially involved in aromatic compound degradation than for most other Sphingopyxis strains. Additional analysis of 44 Sphingopyxis representatives provides insights into the pangenome of Sphingopyxis and revealed a core of 734 protein clusters and between four and 1667 unique proteins per genome.


2018 ◽  
Author(s):  
David Colatriano ◽  
Patricia Tran ◽  
Celine Guéguen ◽  
Williams J. William ◽  
Connie Lovejoy ◽  
...  

AbstractThe Arctic Ocean currently receives a large supply of global river discharge and terrestrial dissolved organic matter. Moreover, an increase in freshwater runoff and riverine transport of organic matter to the Arctic Ocean is a predicted consequence of thawing permafrost and increased precipitation. The fate of the terrestrial humic-rich organic material and its impact on the marine carbon cycle are largely unknown. Here, the first metagenomic survey of the Canada Basin in the Western Arctic Ocean showed that pelagic Chloroflexi from the Arctic Ocean are replete with aromatic compound degradation genes, acquired in part by lateral transfer from terrestrial bacteria. Our results imply marine Chloroflexi have the capacity to use terrestrial organic matter and that their role in the carbon cycle may increase with the changing hydrological cycle.


2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Gisele Nunes Rodrigues ◽  
Asunción Lago-Lestón ◽  
Rodrigo Costa ◽  
Tina Keller-Costa

ABSTRACT We report here the genome sequence of Labrenzia sp. EL143, an alphaproteobacterium isolated from the gorgonian coral Eunicella labiata that possesses various genes involved in halogen and aromatic compound degradation, as well as polyketide synthesis. The strain also maintains multiple genes that confer resistance to toxic compounds such as heavy metals and antibiotics.


Sign in / Sign up

Export Citation Format

Share Document