scholarly journals Phylogenetic and Functional Diversity of Total (DNA) and Expressed (RNA) Bacterial Communities in Urban Green Infrastructure Bioswale Soils

2017 ◽  
Vol 83 (16) ◽  
Author(s):  
Aman S. Gill ◽  
Angela Lee ◽  
Krista L. McGuire

ABSTRACT New York City (NYC) is pioneering green infrastructure with the use of bioswales and other engineered soil-based habitats to provide stormwater infiltration and other ecosystem functions. In addition to avoiding the environmental and financial costs of expanding traditional built infrastructure, green infrastructure is thought to generate cobenefits in the form of diverse ecological processes performed by its plant and microbial communities. Yet, although plant communities in these habitats are closely managed, we lack basic knowledge about how engineered ecosystems impact the distribution and functioning of soil bacteria. We sequenced amplicons of the 16S ribosomal subunit, as well as seven genes associated with functional pathways, generated from both total (DNA-based) and expressed (RNA) soil communities in the Bronx, NYC, NY, in order to test whether bioswale soils host characteristic bacterial communities with evidence for enriched microbial functioning, compared to nonengineered soils in park lawns and tree pits. Bioswales had distinct, phylogenetically diverse bacterial communities, including taxa associated with nutrient cycling and metabolism of hydrocarbons and other pollutants. Bioswale soils also had a significantly greater diversity of genes involved in several functional pathways, including carbon fixation (cbbL-R [cbbL gene, red-like subunit] and apsA), nitrogen cycling (noxZ and amoA), and contaminant degradation (bphA); conversely, no functional genes were significantly more abundant in nonengineered soils. These results provide preliminary evidence that urban land management can shape the diversity and activity of soil communities, with positive consequences for genetic resources underlying valuable ecological functions, including biogeochemical cycling and degradation of common urban pollutants. IMPORTANCE Management of urban soil biodiversity by favoring taxa associated with decontamination or other microbial metabolic processes is a powerful prospect, but it first requires an understanding of how engineered soil habitats shape patterns of microbial diversity. This research adds to our understanding of urban microbial biogeography by providing data on soil bacteria in bioswales, which had relatively diverse and compositionally distinct communities compared to park and tree pit soils. Bioswales also contained comparatively diverse pools of genes related to carbon sequestration, nitrogen cycling, and contaminant degradation, suggesting that engineered soils may serve as effective reservoirs of functional microbial biodiversity. We also examined both total (DNA-based) and expressed (RNA) communities, revealing that total bacterial communities (the exclusive targets in the vast majority of soil studies) were poor predictors of expressed community diversity, pointing to the value of quantifying RNA, especially when ecological functioning is considered.

2019 ◽  
Vol 10 ◽  
Author(s):  
Jessica Lee Joyner ◽  
Jordan Kerwin ◽  
Maha Deeb ◽  
George Lozefski ◽  
Bharath Prithiviraj ◽  
...  

2020 ◽  
Vol 96 (7) ◽  
Author(s):  
Ana Novoa ◽  
Jan-Hendrik Keet ◽  
Yaiza Lechuga-Lago ◽  
Petr Pyšek ◽  
Johannes J Le Roux

ABSTRACT Coastal dunes are ecosystems of high conservation value that are strongly impacted by human disturbances and biological invasions in many parts of the world. Here, we assessed how urbanization and Carpobrotus edulis invasion affect soil bacterial communities on the north-western coast of Spain, by comparing the diversity, structure and composition of soil bacterial communities in invaded and uninvaded soils from urban and natural coastal dune areas. Our results suggest that coastal dune bacterial communities contain large numbers of rare taxa, mainly belonging to the phyla Actinobacteria and Proteobacteria. We found that the presence of the invasive C. edulis increased the diversity of soil bacteria and changed community composition, while urbanization only influenced bacterial community composition. Furthermore, the effects of invasion on community composition were conditional on urbanization. These results were contrary to predictions, as both C. edulis invasion and urbanization have been shown to affect soil abiotic conditions of the studied coastal dunes in a similar manner, and therefore were expected to have similar effects on soil bacterial communities. Our results suggest that other factors (e.g. pollution) might be influencing the impact of urbanization on soil bacterial communities, preventing an increase in the diversity of soil bacteria in urban areas.


Diversity ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 414
Author(s):  
Carmine Crecchio

The Special Issue “Genetic Diversity of Soil Bacterial Communities” collected research and review articles addressing some relevant and unclear aspects of the composition and functioning of bacterial communities in rich or marginal agricultural soils, in field trials as well as in laboratory-scale experiments, at different latitudes and under different types of management.


2019 ◽  
Vol 10 ◽  
Author(s):  
Patrick O. Sorensen ◽  
Jennifer M. Bhatnagar ◽  
Lynn Christenson ◽  
Jorge Duran ◽  
Timothy Fahey ◽  
...  

2013 ◽  
Vol 79 (23) ◽  
pp. 7290-7297 ◽  
Author(s):  
Larisa Lee-Cruz ◽  
David P. Edwards ◽  
Binu M. Tripathi ◽  
Jonathan M. Adams

ABSTRACTTropical forests are being rapidly altered by logging and cleared for agriculture. Understanding the effects of these land use changes on soil bacteria, which constitute a large proportion of total biodiversity and perform important ecosystem functions, is a major conservation frontier. Here we studied the effects of logging history and forest conversion to oil palm plantations in Sabah, Borneo, on the soil bacterial community. We used paired-end Illumina sequencing of the 16S rRNA gene, V3 region, to compare the bacterial communities in primary, once-logged, and twice-logged forest and land converted to oil palm plantations. Bacteria were grouped into operational taxonomic units (OTUs) at the 97% similarity level, and OTU richness and local-scale α-diversity showed no difference between the various forest types and oil palm plantations. Focusing on the turnover of bacteria across space, true β-diversity was higher in oil palm plantation soil than in forest soil, whereas community dissimilarity-based metrics of β-diversity were only marginally different between habitats, suggesting that at large scales, oil palm plantation soil could have higher overall γ-diversity than forest soil, driven by a slightly more heterogeneous community across space. Clearance of primary and logged forest for oil palm plantations did, however, significantly impact the composition of soil bacterial communities, reflecting in part the loss of some forest bacteria, whereas primary and logged forests did not differ in composition. Overall, our results suggest that the soil bacteria of tropical forest are to some extent resilient or resistant to logging but that the impacts of forest conversion to oil palm plantations are more severe.


2021 ◽  
Author(s):  
Christoph Keuschnig ◽  
Jean Martins ◽  
Aline Navel ◽  
Pascal Simonet ◽  
Catherine Larose

Microbial analysis at the micro scale of soil is essential to the overall understanding of microbial organization and interactions, and necessary for a better understanding of soil ecosystem functioning. While bacterial communities have been extensively described, little is known about the organization of fungal communities as well as functional potentials at scales relevant to microbial interactions. Fungal and bacterial communities and changes in nitrogen cycling potentials in the pristine Rothamsted Park Grass soil (bulk soil) as well as in its particle size sub-fractions (PSFs; > 250 µm, 250-63 µm, 63-20 µm, 20-2 µm, < 2 µm and supernatant) were studied. The potential for nitrogen reduction was found elevated in bigger aggregates. The relative abundance of Basidiomycota deceased with decreasing particle size, Ascomycota showed an increase and Mucoromycota became more prominent in particles less than 20 µm. Bacterial community structures changed below 20 µm at the scale where microbes operate.Strikingly, only members of two bacterial and one fungal phyla (Proteobacteria, Bacteroidota and Ascomycota, respectively) were washed-off the soil during fractionation and accumulated in the supernatant fraction where most of the detected bacterial genera (e.g., Pseudomonas, Massilia, Mucilaginibacter, Edaphobaculum, Duganella, Janthinobacterium and Variovorax) were previously associated with exopolysaccharide production and biofilm formation.Overall, the applied method shows potential to study soil microbial communities at micro scales which might be useful in studies focusing on the role of specific fungal taxa in soil structure formation as well as research on how and by whom biofilm-like structures are distributed and organized in soil.


Author(s):  
X.P. Zhu ◽  
N. Wei ◽  
S.S. Zhang ◽  
M. Lin ◽  
Y. Ma

Background: The gut microbiota is an integral part of the host and plays an important role in both growth and development of host. The research on intestinal microbiota of Nibea albiflora and its relationship to fish disease have not been reported before. This study aimed to investigate the composition and differences of gut bacteria between healthy and diseased Nibea albiflora. Methods: The intestines were collected from forty fish (twenty healthy fish and twenty diseased). Total DNA was extracted and then amplified by nested PCR. The PCR product was subjected to the DGGE test and performed at the IlluminaMiseq sequencing. Result: The obtained results of both utilized techniques (DGGE and Next generation sequencing) showed that dominant bacteria could be grouped into four populations and the composition of intestinal bacteria differed significantly between healthy (NH) and diseased (ND) Nibea albiflora. NH has higher levels of γ-Proteobacteria and Firmicutes and with 46.91% Photobacterium supplied the dominant genus in NH. Fusobacteria and Bacteroidetes were higher in ND and Cetobacterium occupied 62.31% and was the dominant genus in ND. More probiotics were detected in NH, such as Lactobacillus, Brevibacillus, Enterococcus and Lactococcus (occupying 1.77% -19.76%), while less than 0.2% were detected for both in ND. More genera that belonged to Vibrionaceae, such as Enterovibrio (9.27%) and Vibrio (2.17%), were detected in ND and their abundances in NH were 0.79% and 0.03%, respectively.


Sign in / Sign up

Export Citation Format

Share Document