scholarly journals Development and Application of Quantitative-PCR Tools for Subgroups of the Roseobacter Clade

2009 ◽  
Vol 75 (23) ◽  
pp. 7542-7547 ◽  
Author(s):  
Alison Buchan ◽  
Mary Hadden ◽  
Marcelino T. Suzuki

ABSTRACT Specific SYBR green-based quantitative-PCR assays targeting conserved regions in the 16S-23S rRNA internal transcribed spacer regions were developed for five subgroups of the environmentally abundant and biogeochemically active Roseobacter clade of marine bacteria. The assays were applied to field samples demonstrating their utility in investigations of abundant Roseobacter group phylotypes in the environment.

2016 ◽  
Vol 83 (5) ◽  
Author(s):  
Seifeddine Ben Tekaya ◽  
Abirama Sundari Ganesan ◽  
Trina Guerra ◽  
Jeffrey O. Dawson ◽  
Michael R. J. Forstner ◽  
...  

ABSTRACT The nodule-forming actinobacterial genus Frankia can generally be divided into 4 taxonomic clusters, with clusters 1, 2, and 3 representing nitrogen-fixing strains of different host infection groups and cluster 4 representing atypical, generally non-nitrogen-fixing strains. Recently, quantitative PCR (qPCR)-based quantification methods have been developed for frankiae of clusters 1 and 3; however, similar approaches for clusters 2 and 4 were missing. We amended a database of partial 23S rRNA gene sequences of Frankia strains belonging to clusters 1 and 3 with sequences of frankiae representing clusters 2 and 4. The alignment allowed us to design primers and probes for the specific detection and quantification of these Frankia clusters by either Sybr Green- or TaqMan-based qPCR. Analyses of frankiae in different soils, all obtained from the same region in Illinois, USA, provided similar results, independent of the qPCR method applied, with abundance estimates of 10 × 105 to 15 × 105 cells (g soil)−1 depending on the soil. Diversity was higher in prairie soils (native, restored, and cultivated), with frankiae of all 4 clusters detected and those of cluster 4 dominating, while diversity in soils under Alnus glutinosa, a host plant for cluster 1 frankiae, or Betula nigra, a related nonhost plant, was restricted to cluster 1 and 3 frankiae and generally members of subgroup 1b were dominating. These results indicate that vegetation affects the basic composition of frankiae in soils, with higher diversity in prairie soils compared to much more restricted diversity under some host and nonhost trees. IMPORTANCE Root nodule formation by the actinobacterium Frankia is host plant specific and largely, but not exclusively, correlates with assignments of strains to specific clusters within the genus. Due to the lack of adequate detection and quantification tools, studies on Frankia have been limited to clusters 1 and 3 and generally excluded clusters 2 and 4. We have developed tools for the detection and quantification of clusters 2 and 4, which can now be used in combination with those developed for clusters 1 and 3 to retrieve information on the ecology of all clusters delineated within the genus Frankia. Our initial results indicate that vegetation affects the basic composition of frankiae in soils, with higher diversity in prairie soils compared to much more restricted diversity under some host and nonhost trees.


2012 ◽  
Vol 90 (3) ◽  
pp. 342-349 ◽  
Author(s):  
Laurentiu Benga ◽  
W. Peter M. Benten ◽  
Eva Engelhardt ◽  
Henrik Christensen ◽  
Martin Sager

2003 ◽  
Vol 69 (11) ◽  
pp. 6634-6643 ◽  
Author(s):  
Ingmar Janse ◽  
Marion Meima ◽  
W. Edwin A. Kardinaal ◽  
Gabriel Zwart

ABSTRACT For many ecological studies of cyanobacteria, it is essential that closely related species or strains can be discriminated. Since this is often not possible by using morphological features, cyanobacteria are frequently studied by using DNA-based methods. A powerful method for analysis of the diversity and dynamics of microbial populations and for checking the purity and affiliation of cultivated strains is denaturing gradient gel electrophoresis (DGGE). We realized high-resolution discrimination of a variety of cyanobacteria by means of DGGE analysis of sections of the internal transcribed spacer between the 16S and 23S rRNA genes (rRNA-ITS). A forward primer specific for cyanobacteria, targeted at the 3′ end of the 16S rRNA gene, was designed. The combination of this primer and three different reverse primers targeted to the rRNA-ITS or to the 23S rRNA gene yielded PCR products of different sizes from cultures of all 16 cyanobacterial genera that were tested but not from other bacteria. DGGE profiles produced from the shortest section of rRNA-ITS consisted of one band for all but one cyanobacterial genera, and those generated from longer stretches of rRNA-ITS yielded DGGE profiles containing one to four bands. The suitability of DGGE for detecting intrageneric and intraspecific variation was tested by using strains of the genus Microcystis. Many strains could be discriminated by means of rRNA-ITS DGGE, and the resolution of this method was strikingly higher than that obtained with previously described methods. The applicability of the developed DGGE assays for analysis of cyanobacteria in field samples was demonstrated by using samples from freshwater lakes. The advantages and disadvantages associated with the use of each developed primer set are discussed.


Sign in / Sign up

Export Citation Format

Share Document