scholarly journals Discovery of Bovine Digital Dermatitis-Associated Treponema spp. in the Dairy Herd Environment by a Targeted Deep-Sequencing Approach

2014 ◽  
Vol 80 (14) ◽  
pp. 4427-4432 ◽  
Author(s):  
Kirstine Klitgaard ◽  
Martin W. Nielsen ◽  
Hans-Christian Ingerslev ◽  
Mette Boye ◽  
Tim K. Jensen

ABSTRACTThe bacteria associated with the infectious claw disease bovine digital dermatitis (DD) are spirochetes of the genusTreponema; however, their environmental reservoir remains unknown. To our knowledge, the current study is the first report of the discovery and phylogenetic characterization of rRNA gene sequences from DD-associated treponemes in the dairy herd environment. Although the spread of DD appears to be facilitated by wet floors covered with slurry, no DD-associated treponemes have been isolated from this environment previously. Consequently, there is a lack of knowledge about the spread of this disease among cows within a herd as well as between herds. To address the issue of DD infection reservoirs, we searched for evidence of DD-associated treponemes in fresh feces, in slurry, and in hoof lesions by deep sequencing of the V3 and V4 hypervariable regions of the 16S rRNA gene coupled with identification at the operational-taxonomic-unit level. Using treponeme-specific primers in this high-throughput approach, we identified small amounts of DNA (on average 0.6% of the total amount of sequence reads) from DD-associated treponemes in 43 of 64 samples from slurry and cow feces collected from six geographically dispersed dairy herds. Species belonging to theTreponema denticola/Treponema pedis-like andTreponema phagedenis-like phylogenetic clusters were among the most prevalent treponemes in both the dairy herd environment and the DD lesions. By the high-throughput approach presented here, we have demonstrated that cow feces and environmental slurry are possible reservoirs of DD-associated treponemes. This method should enable further clarification of the etiopathogenesis of DD.

2017 ◽  
Vol 83 (11) ◽  
Author(s):  
Kirstine Klitgaard ◽  
Mikael L. Strube ◽  
Anastasia Isbrand ◽  
Tim K. Jensen ◽  
Martin W. Nielsen

ABSTRACT At present, very little information exists regarding what role the environmental slurry may play as an infection reservoir and/or route of transmission for bovine digital dermatitis (DD), a disease which is a global problem in dairy herds. To investigate whether DD-related bacteria belong to the indigenous microbiota of the dairy herd environment, we used deep amplicon sequencing of the 16S rRNA gene in 135 slurry samples collected from different sites in 22 dairy farms, with and without DD-infected cows. Both the general bacterial populations and digital dermatitis-associated Treponema were targeted in this study. The results revealed significant differences in the bacterial communities between the herds, with only 12 bacterial taxa shared across at least 80% of all the individual samples. These differences in the herd microbiota appeared to reflect mainly between-herd variation. Not surprisingly, the slurry was dominated by ubiquitous gastrointestinal bacteria, such as Ruminococcaceae and Lachnospiraceae. Despite the low relative abundance of spirochetes, which ranged from 0 to 0.6%, we were able to detect small amounts of bacterial DNA from DD-associated treponemes in the slurry. However, the DD-associated Treponema spp. were detected only in samples from herds with reported DD problems. These data indicate that treponemes involved in the pathogenesis of DD are not part of the normal environmental microflora in dairy herds without clinical DD and, consequently, that slurry is not a primary reservoir of infection. IMPORTANCE Bovine digital dermatitis (DD), a dermal disease which causes lameness in dairy cattle, is a serious problem worldwide. To control this disease, the infection reservoirs and transmission routes of DD pathogens need to be clarified. The dairy herd slurry may be a pathogen reservoir of DD-associated bacteria. The rationale for the present study was, therefore, to examine whether DD-associated bacteria are always present in slurry or if they are found only in DD-afflicted herds. The results strongly indicated that DD Treponema spp. are not part of the indigenous slurry and, therefore, do not comprise an infection reservoir in healthy herds. This study applied next-generation sequencing technology to decipher the microbial compositions of environmental slurry of dairy herds with and without digital dermatitis.


2015 ◽  
Vol 81 (7) ◽  
pp. 2433-2444 ◽  
Author(s):  
Sandra Kittelmann ◽  
Savannah R. Devente ◽  
Michelle R. Kirk ◽  
Henning Seedorf ◽  
Burk A. Dehority ◽  
...  

ABSTRACTThe development of high-throughput methods, such as the construction of 18S rRNA gene clone or pyrosequencing libraries, has allowed evaluation of ciliate community composition in hundreds of samples from the rumen and other intestinal habitats. However, several genera of mammalian intestinal ciliates have been described based only on morphological features and, to date, have not been identified using molecular methods. Here, we isolated single cells of one of the smallest but widely distributed intestinal ciliates,Charonina ventriculi, and sequenced its 18S rRNA gene. We verified the sequence in a full-cycle rRNA approach using fluorescencein situhybridization and thereby assigned an 18S rRNA gene sequence to this species previously known only by its morphology. Based on its full-length 18S rRNA gene sequence,Charonina ventriculiwas positioned within the phylogeny of intestinal ciliates in the subclass Trichostomatia. The taxonomic framework derived from this phylogeny was used for taxonomic assignment of trichostome ciliate 18S rRNA gene sequence data stemming from high-throughput amplicon pyrosequencing of rumen-derived DNA samples. The 18S rRNA gene-based ciliate community structure was compared to that obtained from microscopic counts using the same samples. Both methods allowed identification of dominant members of the ciliate communities and classification of the rumen ciliate community into one of the types first described by Eadie in 1962. Notably, each method is associated with advantages and disadvantages. Microscopy is a highly accurate method for evaluation of total numbers or relative abundances of different ciliate genera in a sample, while 18S rRNA gene pyrosequencing represents a valuable alternative for comparison of ciliate community structure in a large number of samples from different animals or treatment groups.


mBio ◽  
2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Caitriona M. Guinane ◽  
Amany Tadrous ◽  
Fiona Fouhy ◽  
C. Anthony Ryan ◽  
Eugene M. Dempsey ◽  
...  

ABSTRACT The human appendix has historically been considered a vestige of evolutionary development with an unknown function. While limited data are available on the microbial composition of the appendix, it has been postulated that this organ could serve as a microbial reservoir for repopulating the gastrointestinal tract in times of necessity. We aimed to explore the microbial composition of the human appendix, using high-throughput sequencing of the 16S rRNA gene V4 region. Seven patients, 5 to 25 years of age, presenting with symptoms of acute appendicitis were included in this study. Results showed considerable diversity and interindividual variability among the microbial composition of the appendix samples. In general, however, Firmicutes was the dominant phylum, with the majority of additional sequences being assigned at various levels to Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria. Despite the large diversity in the microbiota found within the appendix, however, a few major families and genera were found to comprise the majority of the sequences present. Interestingly, also, certain taxa not generally associated with the human intestine, including the oral pathogens Gemella, Parvimonas, and Fusobacterium, were identified among the appendix samples. The prevalence of genera such as Fusobacterium could also be linked to the severity of inflammation of the organ. We conclude that the human appendix contains a robust and varied microbiota distinct from the microbiotas in other niches within the human microbiome. The microbial composition of the human appendix is subject to extreme variability and comprises a diversity of biota that may play an important, as-yet-unknown role in human health. IMPORTANCE There are currently limited data available on the microbial composition of the human appendix. It has been suggested, however, that it may serve as a “safe house” for commensal bacteria that can reinoculate the gut at need. The present study is the first comprehensive view of the microbial composition of the appendix as determined by high-throughput sequencing. We have determined that the human appendix contains a wealth of microbes, including members of 15 phyla. Important information regarding the associated bacterial diversity of the appendix which will help determine the role, if any, the appendix microbiota has in human health is presented.


2012 ◽  
Vol 78 (8) ◽  
pp. 2677-2688 ◽  
Author(s):  
Noha Youssef ◽  
Brandi L. Steidley ◽  
Mostafa S. Elshahed

ABSTRACTThe utilization of high-throughput sequencing technologies in 16S rRNA gene-based diversity surveys has indicated that within most ecosystems, a significant fraction of the community could not be assigned to known microbial phyla. Accurate determination of the phylogenetic affiliation of such sequences is difficult due to the short-read-length output of currently available high-throughput technologies. This fraction could harbor multiple novel phylogenetic lineages that have so far escaped detection. Here we describe our efforts in accurate assessment of the novelty and phylogenetic affiliation of selected unclassified lineages within a pyrosequencing data set generated from source sediments of Zodletone Spring, a sulfide- and sulfur-rich spring in southwestern Oklahoma. Lineage-specific forward primers were designed for 78 putatively novel lineages identified within the pyrosequencing data set, and representative nearly full-length small-subunit (SSU) rRNA gene sequences were obtained by pairing those primers with reverse universal bacterial primers. Of the 78 lineages tested, amplifiable products were obtained for 52, 32 of which had at least one nearly full-length sequence that was representative of the lineage targeted. Analysis of phylogenetic affiliation of the obtained Sanger sequences identified 5 novel candidate phyla and 10 novel candidate classes (withinFibrobacteres,Planctomycetes, and candidate phyla BRC1, GN12, TM6, TM7, LD1, WS2, and GN06) in the data set, in addition to multiple novel orders and families. The discovery of multiple novel phyla within a pilot study of a single ecosystem clearly shows the potential of the approach in identifying novel diversities within the rare biosphere.


2016 ◽  
Vol 82 (12) ◽  
pp. 3525-3536 ◽  
Author(s):  
Nikea Ulrich ◽  
Abigail Rosenberger ◽  
Colin Brislawn ◽  
Justin Wright ◽  
Collin Kessler ◽  
...  

ABSTRACTBacterial community composition and longitudinal fluctuations were monitored in a riverine system during and after Superstorm Sandy to better characterize inter- and intracommunity responses associated with the disturbance associated with a 100-year storm event. High-throughput sequencing of the 16S rRNA gene was used to assess microbial community structure within water samples from Muddy Creek Run, a second-order stream in Huntingdon, PA, at 12 different time points during the storm event (29 October to 3 November 2012) and under seasonally matched baseline conditions. High-throughput sequencing of the 16S rRNA gene was used to track changes in bacterial community structure and divergence during and after Superstorm Sandy. Bacterial community dynamics were correlated to measured physicochemical parameters and fecal indicator bacteria (FIB) concentrations. Bioinformatics analyses of 2.1 million 16S rRNA gene sequences revealed a significant increase in bacterial diversity in samples taken during peak discharge of the storm. Beta-diversity analyses revealed longitudinal shifts in the bacterial community structure. Successional changes were observed, in whichBetaproteobacteriaandGammaproteobacteriadecreased in 16S rRNA gene relative abundance, while the relative abundance of members of theFirmicutesincreased. Furthermore, 16S rRNA gene sequences matching pathogenic bacteria, including strains ofLegionella,Campylobacter,Arcobacter, andHelicobacter, as well as bacteria of fecal origin (e.g.,Bacteroides), exhibited an increase in abundance after peak discharge of the storm. This study revealed a significant restructuring of in-stream bacterial community structure associated with hydric dynamics of a storm event.IMPORTANCEIn order to better understand the microbial risks associated with freshwater environments during a storm event, a more comprehensive understanding of the variations in aquatic bacterial diversity is warranted. This study investigated the bacterial communities during and after Superstorm Sandy to provide fine time point resolution of dynamic changes in bacterial composition. This study adds to the current literature by revealing the variation in bacterial community structure during the course of a storm. This study employed high-throughput DNA sequencing, which generated a deep analysis of inter- and intracommunity responses during a significant storm event. This study has highlighted the utility of applying high-throughput sequencing for water quality monitoring purposes, as this approach enabled a more comprehensive investigation of the bacterial community structure. Altogether, these data suggest a drastic restructuring of the stream bacterial community during a storm event and highlight the potential of high-throughput sequencing approaches for assessing the microbiological quality of our environment.


mBio ◽  
2012 ◽  
Vol 3 (5) ◽  
Author(s):  
Dea Shahinas ◽  
Michael Silverman ◽  
Taylor Sittler ◽  
Charles Chiu ◽  
Peter Kim ◽  
...  

ABSTRACT Fecal microbiome transplantation by low-volume enema is an effective, safe, and inexpensive alternative to antibiotic therapy for patients with chronic relapsing Clostridium difficile infection (CDI). We explored the microbial diversity of pre- and posttransplant stool specimens from CDI patients (n = 6) using deep sequencing of the 16S rRNA gene. While interindividual variability in microbiota change occurs with fecal transplantation and vancomycin exposure, in this pilot study we note that clinical cure of CDI is associated with an increase in diversity and richness. Genus- and species-level analysis may reveal a cocktail of microorganisms or products thereof that will ultimately be used as a probiotic to treat CDI. IMPORTANCE Antibiotic-associated diarrhea (AAD) due to Clostridium difficile is a widespread phenomenon in hospitals today. Despite the use of antibiotics, up to 30% of patients are unable to clear the infection and suffer recurrent bouts of diarrheal disease. As a result, clinicians have resorted to fecal microbiome transplantation (FT). Donor stool for this type of therapy is typically obtained from a spouse or close relative and thoroughly tested for various pathogenic microorganisms prior to infusion. Anecdotal reports suggest a very high success rate of FT in patients who fail antibiotic treatment (>90%). We used deep-sequencing technology to explore the human microbial diversity in patients with Clostridium difficile infection (CDI) disease after FT. Genus- and species-level analysis revealed a cocktail of microorganisms in the Bacteroidetes and Firmicutes phyla that may ultimately be used as a probiotic to treat CDI.


2018 ◽  
Vol 84 (9) ◽  
Author(s):  
Claudia Tominski ◽  
Helene Heyer ◽  
Tina Lösekann-Behrens ◽  
Sebastian Behrens ◽  
Andreas Kappler

ABSTRACTMost isolated nitrate-reducing Fe(II)-oxidizing microorganisms are mixotrophic, meaning that Fe(II) is chemically oxidized by nitrite that forms during heterotrophic denitrification, and it is debated to which extent Fe(II) is enzymatically oxidized. One exception is the chemolithoautotrophic enrichment culture KS, a consortium consisting of a dominant Fe(II) oxidizer,Gallionellaceaesp., and less abundant heterotrophic strains (e.g.,Bradyrhizobiumsp.,Nocardioidessp.). Currently, this is the only nitrate-reducing Fe(II)-oxidizing culture for which autotrophic growth has been demonstrated convincingly for many transfers over more than 2 decades. We used 16S rRNA gene amplicon sequencing and physiological growth experiments to analyze the community composition and dynamics of culture KS with various electron donors and acceptors. Under autotrophic conditions, an operational taxonomic unit (OTU) related to known microaerophilic Fe(II) oxidizers within the familyGallionellaceaedominated culture KS. With acetate as an electron donor, most 16S rRNA gene sequences were affiliated withBradyrhizobiumsp.Gallionellaceaesp. not only was able to oxidize Fe(II) under autotrophic and mixotrophic conditions but also survived over several transfers of the culture on only acetate, although it then lost the ability to oxidize Fe(II).Bradyrhizobiumspp. became and remained dominant when culture KS was cultivated for only one transfer under heterotrophic conditions, even when conditions were reverted back to autotrophic in the next transfer. This study showed a dynamic microbial community in culture KS that responded to changing substrate conditions, opening up questions regarding carbon cross-feeding, metabolic flexibility of the individual strains in KS, and the mechanism of Fe(II) oxidation by a microaerophile in the absence of O2.IMPORTANCENitrate-reducing Fe(II)-oxidizing microorganisms are present in aquifers, soils, and marine and freshwater sediments. Most nitrate-reducing Fe(II) oxidizers known are mixotrophic, meaning that they need organic carbon to continuously oxidize Fe(II) and grow. In these microbes, Fe(II) was suggested to be chemically oxidized by nitrite that forms during heterotrophic denitrification, and it remains unclear whether or to what extent Fe(II) is enzymatically oxidized. In contrast, the enrichment culture KS was shown to oxidize Fe(II) autotrophically coupled to nitrate reduction. This culture contains the designated Fe(II) oxidizerGallionellaceaesp. and several heterotrophic strains (e.g.,Bradyrhizobiumsp.). We showed that culture KS is able to metabolize Fe(II) and a variety of organic substrates and is able to adapt to dynamic environmental conditions. When the community composition changed andBradyrhizobiumbecame the dominant community member, Fe(II) was still oxidized byGallionellaceaesp., even when culture KS was cultivated with acetate/nitrate [Fe(II) free] before being switched back to Fe(II)/nitrate.


2011 ◽  
Vol 77 (8) ◽  
pp. 2563-2572 ◽  
Author(s):  
Christopher J. Schulz ◽  
Gary W. Childers

ABSTRACTBacteroidalesare attractive as water quality indicators because of their potential to discern sources of fecal pollution, and it is presumed that these bacteria do not multiply outside their host organisms. The persistence of a fecalBacteroidalesmarker was monitored over 14 days in river water microcosms that varied in temperature from 10°C to 30°C and salinity from 0‰ to 30‰ by quantitative PCR (qPCR). Decay rates were estimated and compared to the results of other studies examining the survival and persistence ofBacteroidalesmarkers by converting decay rates from other studies to a common decay rate unit. The log-linear decay rates estimated in this work ranged from −0.18 to −1.31 ln(CT/C0) day−1, whereCTis the threshold cycle andC0is the concentration of cells at time zero, which is comparable to findings in previous studies. Salinity had a positive effect onBacteroidalesmarker persistence, while decay was more rapid at higher temperatures. Comparison of 16S rRNA gene clone libraries generated from microcosm samples indicated that most of the operational taxonomic unit (OTU) and phylogenetic diversity was found within samples and not between samples, indicating at least qualitatively that diverse lineages persist and likely have similar survival characteristics under most of the conditions examined. It was noted that the samples at higher salinities also had the smallest amount of diversity between samples as well as the lowest decay rates. This research also highlights the need for a repository of raw survival and persistence data if more sophisticated models of decay are to be employed and compared between different studies.


2019 ◽  
Vol 85 (11) ◽  
Author(s):  
Felicitas Pswarayi ◽  
Michael G. Gänzle

ABSTRACTMahewu is a fermented cereal beverage produced in Zimbabwe. This study determined the composition and origin of mahewu microbiota. The microbiota of mahewu samples consisted of 3 to 7 dominant strains of lactobacilli and two strains of yeasts.Enterobacteriaceaewere not detected.Candida glabratawas present in high cell counts from samples collected in summer but not from samples collected in winter. Millet malt is the only raw ingredient used in the production of mahewu and is a likely source of fermentation microbiota; therefore, malt microbiota was also analyzed by culture-dependent and high-throughput 16S rRNA gene sequencing methodologies. Millet malt contained 8 to 19 strains ofEnterobacteriaceae, lactobacilli, bacilli, and very few yeasts. Strain-specific quantitative PCR assays were established on the basis of the genome sequences ofLactobacillus fermentumFUA3588 and FUA3589 andLactobacillus plantarumFUA3590 to obtain a direct assessment of the identity of strains from malt and mahewu.L. fermentumFUA3588 and FUA3589 were detected in millet malt, demonstrating that millet malt is a main source of mahewu microbiota. Strains which were detected in summer were not detected in samples produced at the same site in winter. Model mahewu fermentations conducted with a 5-strain inoculum consisting of lactobacilli,Klebsiella pneumoniae,andCronobacter sakazakiidemonstrated that lactobacilli outcompeteEnterobacteriaceae, which sharply decreased in the first 24 h. In conclusion, mahewu microbiota is mainly derived from millet malt microbiota, but minor components of malt microbiota rapidly outcompeteEnterobacteriaceaeandBacillusspecies during fermentation.IMPORTANCEThis study provides insight into the composition and origin of the microbiota of mahewu and the composition of millet malt microbiota. Fermentation microbiota are often hypothesized to be derived from the environment, but the evidence remains inconclusive. Our findings confirm that millet malt is the major source of mahewu microbiota. By complementing culture methods with high-throughput sequencing of 16S rRNA amplicons and strain-specific quantitative PCR, this study provides evidence about the source of mahewu microbiota, which can inform the development of starter cultures for mahewu production. The study also documents the fate ofEnterobacteriaceaeduring the fermentation of mahewu. There are concerns regarding the safety of traditionally prepared mahewu, and this requires in-depth knowledge of the fermentation process. Therefore, this study elucidated millet malt microbiota and identified cultures that are able to control the high numbers ofEnterobacteriaceaethat are initially present in mahewu fermentations.


Sign in / Sign up

Export Citation Format

Share Document