scholarly journals Deletion of Genes Encoding Cytochrome Oxidases and Quinol Monooxygenase Blocks the Aerobic-Anaerobic Shift in Escherichia coli K-12 MG1655

2010 ◽  
Vol 76 (19) ◽  
pp. 6529-6540 ◽  
Author(s):  
Vasiliy A. Portnoy ◽  
David A. Scott ◽  
Nathan E. Lewis ◽  
Yekaterina Tarasova ◽  
Andrei L. Osterman ◽  
...  

ABSTRACT The constitutive activation of the anoxic redox control transcriptional regulator (ArcA) in Escherichia coli during aerobic growth, with the consequent production of a strain that exhibits anaerobic physiology even in the presence of air, is reported in this work. Removal of three terminal cytochrome oxidase genes (cydAB, cyoABCD, and cbdAB) and a quinol monooxygenase gene (ygiN) from the E. coli K-12 MG1655 genome resulted in the activation of ArcA aerobically. These mutations resulted in reduction of the oxygen uptake rate by nearly 98% and production of d-lactate as a sole by-product under oxic and anoxic conditions. The knockout strain exhibited nearly identical physiological behaviors under both conditions, suggesting that the mutations resulted in significant metabolic and regulatory perturbations. In order to fully understand the physiology of this mutant and to identify underlying metabolic and regulatory reasons that prevent the transition from an aerobic to an anaerobic phenotype, we utilized whole-genome transcriptome analysis, 13C tracing experiments, and physiological characterization. Our analysis showed that the deletions resulted in the activation of anaerobic respiration under oxic conditions and a consequential shift in the content of the quinone pool from ubiquinones to menaquinones. An increase in menaquinone concentration resulted in the activation of ArcA. The activation of the ArcB/ArcA regulatory system led to a major shift in the metabolic flux distribution through the central metabolism of the mutant strain. Flux analysis indicated that the mutant strain had undetectable fluxes around the tricarboxylic acid (TCA) cycle and elevated flux through glycolysis and anaplerotic input to oxaloacetate. Flux and transcriptomics data were highly correlated and showed similar patterns.

2008 ◽  
Vol 74 (22) ◽  
pp. 7002-7015 ◽  
Author(s):  
K. Lemuth ◽  
T. Hardiman ◽  
S. Winter ◽  
D. Pfeiffer ◽  
M. A. Keller ◽  
...  

ABSTRACT A time series of whole-genome transcription profiling of Escherichia coli K-12 W3110 was performed during a carbon-limited fed-batch process. The application of a constant feed rate led to the identification of a dynamic sequence of diverse carbon limitation responses (e.g., the hunger response) and at the same time provided a global view of how cellular and extracellular resources are used: the synthesis of high-affinity transporters guarantees maximal glucose influx, thereby preserving the phosphoenolpyruvate pool, and energy-dependent chemotaxis is reduced in order to provide a more economic “work mode.” σS-mediated stress and starvation responses were both found to be of only minor relevance. Thus, the experimental setup provided access to the hunger response and enabled the differentiation of the hunger response from the general starvation response. Our previous topological model of the global regulation of the E. coli central carbon metabolism through the crp, cra, and relA/spoT modulons is supported by correlating transcript levels and metabolic fluxes and can now be extended. The substrate is extensively oxidized in the tricarboxylic acid (TCA) cycle to enhance energy generation. However, the general rate of oxidative decarboxylation within the pentose phosphate pathway and the TCA cycle is restricted to a minimum. Fine regulation of the carbon flux through these pathways supplies sufficient precursors for biosyntheses. The pools of at least three precursors are probably regulated through activation of the (phosphoenolpyruvate-)glyoxylate shunt. The present work shows that detailed understanding of the genetic regulation of bacterial metabolism provides useful insights for manipulating the carbon flux in technical production processes.


Author(s):  
Pierre Millard ◽  
Julien Pérochon ◽  
Fabien Letisse

L-rhamnose and L-fucose are the two main 6-deoxyhexoses Escherichia coli can use as carbon and energy sources. Deoxyhexose metabolism leads to the formation of lactaldehyde whose fate depends on oxygen availability. Under anaerobic conditions, lactaldehyde is reduced to 1,2-propanediol whereas under aerobic condition, it should be oxidised into lactate and then channelled into the central metabolism. However, although this all-or-nothing view is accepted in the literature, it seems overly simplistic since propanediol is also reported to be present in the culture medium during aerobic growth on L-fucose. To clarify the functioning of 6-deoxyhexose sugar metabolism, a quantitative metabolic analysis was performed to determine extra- and intracellular fluxes in E. coli K-12 MG1655 (a laboratory strain) and in E. coli Nissle 1917 (a human commensal strain) during anaerobic and aerobic growth on L-rhamnose and L-fucose. As expected, lactaldehyde is fully reduced to 1,2-propanediol in anoxic conditions allowing complete reoxidation of the NADH produced by glyceraldehyde-3-phosphate-dehydrogenase. We also found that net ATP synthesis is ensured by acetate production. More surprisingly, lactaldehyde is also primarily reduced into 1,2-propanediol under aerobic conditions. For growth on L-fucose, 13 C-metabolic flux analysis revealed a large excess of available energy, highlighting the need to better characterize ATP utilization processes. The probiotic E. coli Nissle 1917 strain exhibits similar metabolic traits, indicating that they are not the result of the K-12 strain’s prolonged laboratory use. IMPORTANCE E. coli ’s ability to survive, grow and colonize the gastrointestinal tract stems from its use of partially digested food and hydrolysed glycosylated proteins (mucins) from the intestinal mucus layer as substrates. These include L-fucose and L-rhamnose, two 6-deoxyhexose sugars, whose catabolic pathways have been established by genetic and biochemical studies. However, the functioning of these pathways has only partially been elucidated. Our quantitative metabolic analysis provides a comprehensive picture of 6-deoxyhexose sugar metabolism in E. coli under anaerobic and aerobic conditions. We found that 1,2-propanediol is a major by-product under both conditions, revealing the key role of fermentative pathways in 6-deoxyhexose sugar metabolism. This metabolic trait is shared by both E. coli strains studied here, a laboratory strain and a probiotic strain. Our findings add to our understanding of E. coli ’s metabolism and of its functioning in the bacterium’s natural environment.


2021 ◽  
Author(s):  
Pierre Millard ◽  
Julien Pérochon ◽  
Fabien Letisse

ABSTRACTL-rhamnose and L-fucose are the two main 6-deoxyhexoses Escherichia coli can use as carbon and energy sources. Deoxyhexose metabolism leads to the formation of lactaldehyde whose fate depends on oxygen availability. Under anaerobic conditions, lactaldehyde is reduced to 1,2-propanediol whereas under aerobic condition, it should be oxidised into lactate and then channelled into the central metabolism. However, although this all-or-nothing view is accepted in the literature, it seems overly simplistic since propanediol is also reported to be present in the culture medium during aerobic growth on L-fucose. To clarify the functioning of 6-deoxyhexose sugar metabolism, a quantitative metabolic analysis was performed to determine extra- and intracellular fluxes in E. coli K-12 MG1655 (a laboratory strain) and in E. coli Nissle 1917 (a human commensal strain) during anaerobic and aerobic growth on L-rhamnose and L-fucose. As expected, lactaldehyde is fully reduced to 1,2-propanediol in anoxic conditions allowing complete reoxidation of the NADH produced by glyceraldehyde-3-phosphate-dehydrogenase. We also found that net ATP synthesis is ensured by acetate production. More surprisingly, lactaldehyde is also primarily reduced into 1,2-propanediol under aerobic conditions. For growth on L-fucose, 13C-metabolic flux analysis revealed a large excess of available energy, highlighting the need to better characterize ATP utilization processes. The probiotic E. coli Nissle 1917 strain exhibits similar metabolic traits, indicating that they are not the result of the K-12 strain’s prolonged laboratory use.IMPORTANCEE. coli’s ability to survive, grow and colonize the gastrointestinal tract stems from its use of partially digested food and hydrolysed glycosylated proteins (mucins) from the intestinal mucus layer as substrates. These include L-fucose and L-rhamnose, two 6-deoxyhexose sugars, whose catabolic pathways have been established by genetic and biochemical studies. However, the functioning of these pathways has only partially been elucidated. Our quantitative metabolic analysis provides a comprehensive picture of 6-deoxyhexose sugar metabolism in E. coli under anaerobic and aerobic conditions. We found that 1,2-propanediol is a major by-product under both conditions, revealing the key role of fermentative pathways in 6-deoxyhexose sugar metabolism. This metabolic trait is shared by both E. coli strains studied here, a laboratory strain and a probiotic strain. Our findings add to our understanding of E. coli’s metabolism and of its functioning in the bacterium’s natural environment.


2013 ◽  
Vol 80 (4) ◽  
pp. 1388-1393 ◽  
Author(s):  
Zhen Chen ◽  
Rajesh Reddy Bommareddy ◽  
Doinita Frank ◽  
Sugima Rappert ◽  
An-Ping Zeng

ABSTRACTAllosteric regulation of phosphoenolpyruvate carboxylase (PEPC) controls the metabolic flux distribution of anaplerotic pathways. In this study, the feedback inhibition ofCorynebacterium glutamicumPEPC was rationally deregulated, and its effect on metabolic flux redistribution was evaluated. Based on rational protein design, six PEPC mutants were designed, and all of them showed significantly reduced sensitivity toward aspartate and malate inhibition. Introducing one of the point mutations (N917G) into theppcgene, encoding PEPC of the lysine-producing strainC. glutamicumLC298, resulted in ∼37% improved lysine production.In vitroenzyme assays and13C-based metabolic flux analysis showed ca. 20 and 30% increases in the PEPC activity and corresponding flux, respectively, in the mutant strain. Higher demand for NADPH in the mutant strain increased the flux toward pentose phosphate pathway, which increased the supply of NADPH for enhanced lysine production. The present study highlights the importance of allosteric regulation on the flux control of central metabolism. The strategy described here can also be implemented to improve other oxaloacetate-derived products.


2004 ◽  
Vol 70 (12) ◽  
pp. 7277-7287 ◽  
Author(s):  
Christoph Wittmann ◽  
Patrick Kiefer ◽  
Oskar Zelder

ABSTRACT Metabolic fluxes in the central metabolism were determined for lysine-producing Corynebacterium glutamicum ATCC 21526 with sucrose as a carbon source, providing an insight into molasses-based industrial production processes with this organism. For this purpose, 13C metabolic flux analysis with parallel studies on [1-13CFru]sucrose, [1-13CGlc]sucrose, and [13C6 Fru]sucrose was carried out. C. glutamicum directed 27.4% of sucrose toward extracellular lysine. The strain exhibited a relatively high flux of 55.7% (normalized to an uptake flux of hexose units of 100%) through the pentose phosphate pathway (PPP). The glucose monomer of sucrose was completely channeled into the PPP. After transient efflux, the fructose residue was mainly taken up by the fructose-specific phosphotransferase system (PTS) and entered glycolysis at the level of fructose-1,6-bisphosphate. Glucose-6-phosphate isomerase operated in the gluconeogenetic direction from fructose-6-phosphate to glucose-6-phosphate and supplied additional carbon (7.2%) from the fructose part of the substrate toward the PPP. This involved supply of fructose-6-phosphate from the fructose part of sucrose either by PTSMan or by fructose-1,6-bisphosphatase. C. glutamicum further exhibited a high tricarboxylic acid (TCA) cycle flux of 78.2%. Isocitrate dehydrogenase therefore significantly contributed to the total NADPH supply of 190%. The demands for lysine (110%) and anabolism (32%) were lower than the supply, resulting in an apparent NADPH excess. The high TCA cycle flux and the significant secretion of dihydroxyacetone and glycerol display interesting targets to be approached by genetic engineers for optimization of the strain investigated.


Sign in / Sign up

Export Citation Format

Share Document