scholarly journals Characterization of a Novel Angular Dioxygenase from Fluorene-Degrading Sphingomonas sp. Strain LB126

2007 ◽  
Vol 74 (4) ◽  
pp. 1050-1057 ◽  
Author(s):  
Luc Schuler ◽  
Sinéad M. Ní Chadhain ◽  
Yves Jouanneau ◽  
Christine Meyer ◽  
Gerben J. Zylstra ◽  
...  

ABSTRACT In this study, the genes involved in the initial attack on fluorene by Sphingomonas sp. strain LB126 were investigated. The α and β subunits of a dioxygenase complex (FlnA1-FlnA2), showing 63 and 51% sequence identity, respectively, to the subunits of an angular dioxygenase from the gram-positive dibenzofuran degrader Terrabacter sp. strain DBF63, were identified. When overexpressed in Escherichia coli, FlnA1-FlnA2 was responsible for the angular oxidation of fluorene, 9-hydroxyfluorene, 9-fluorenone, dibenzofuran, and dibenzo-p-dioxin. Moreover, FlnA1-FlnA2 was able to oxidize polycyclic aromatic hydrocarbons and heteroaromatics, some of which were not oxidized by the dioxygenase from Terrabacter sp. strain DBF63. The quantification of resulting oxidation products showed that fluorene and phenanthrene were the preferred substrates of FlnA1-FlnA2.

1999 ◽  
Vol 40 (4-5) ◽  
pp. 107-114 ◽  
Author(s):  
A. Kornmüller ◽  
U. Wiesmann

The continuous ozonation of polycyclic aromatic hydrocarbons (PAH) was studied in a two stage ozonation system followed by serobic biological degradation. The highly condensed PAH benzo(e)pyrene and benzo(k)fluoranthene were oxidized selectiely in synthetic oil/water-emulsions. The influence of the ozone mass transfer gas-liquid on the reaction rate of benzo(k)fluoranthene was studied for process optimization. The dissolved ozone concentration is influenced by temperature to a higher degree than the reaction rate of PAH. In dependence on pH, PAH oxidation occurs by a direct reaction with ozone inside the oil droplets. Two main ozonation products of benzo(e)pyrene were quantified at different retention times during ozonation and their transformation could be shown in the biological treatment step.


2021 ◽  
Vol 19 (3) ◽  
pp. 246-254
Author(s):  
Nur Zaida Zahari ◽  
◽  
Erma Hani Baharudzaman ◽  
Piakong Mohd Tuah ◽  
Fera Nony Cleophas ◽  
...  

Oil spills are one of the environmental pollutions that commonly occur along coastal areas. Tar-balls are one of the products that come from the oil spill pollution. In this study, tar-ball pollution was monitored at 10 points along the coastline of Marintaman Beach in Sipitang, Sabah, Malaysia. This research determined the physical characteristics, composition, and concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in tar-balls. The total number of tar-balls collected was 227 (n=227). The tar-balls were observed in various shapes and the sizes were recorded in the range of 0.1 cm to 6.9 cm. The composition and concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in the outer and inner layer of tar-balls were determined. The results showed that the main Polycyclic Aromatic Hydrocarbons (PAHs) compounds were found in inner layers of the tar-balls with benzo (g,h,i) perylene (72.26 mg/kg), flourene (59.87 mg/kg), dibenzo (a,h) anthracene (44.48 mg/kg), indeno (1,2,3-c,d) pyrene (78.18 mg/kg), and benzo (e) fluoranthene (45.70 mg/kg), respectively. Further research was done with the bioaugmentation study of locally isolated beneficial microorganisms (LIBeM) consortium for treatment of tar-balls in an Aerated Static Pile (ASP) bioreactor system. The results showed that, after 84 days of treatment, this consortium, consisting of C. tropicalis-RETL-Cr1, C. violaceum-MAB-Cr1, and P. aeruginosa-BAS-Cr1, was able to degrade total petroleum hydrocarbon (TPH) by 84% as compared to natural attenuation (19%). The microbial population of this consortium during the biodegradation study is also discussed in this paper.


2018 ◽  
Vol 8 (19) ◽  
Author(s):  
Carolyn L. Nanca ◽  
Kimberly D. Neri ◽  
Anna Christina R. Ngo ◽  
Reuel M. Bennett ◽  
Gina R. Dedeles

Background. Polycyclic aromatic hydrocarbons (PAHs) are common environmental contaminants which are highly toxic due to their carcinogenic and mutagenic effects. They are released into the environment by incomplete combustion of solid and liquid fuels, accidental spillage of oils and seepage from industrial activities. One of the promising processes mitigating PAHs is through biodegradation. However, conventional microbiological treatment processes do not function well at high salt concentrations. Hence, utilization of halophilic bacteria should be considered. Objectives. This study aimed to assess the ability of halophilic bacteria isolated from local salt beds in Pangasinan and Cavite, the Philippines, to degrade PAHs pyrene, fluorene and fluoranthene. Methods. Polycyclic aromatic hydrocarbon-tolerant halophilic bacteria collected from two sampling sites were phenotypically characterized, molecularly identified and tested to determine their potential to degrade the PAHs pyrene, fluorene and fluoranthene at a hypersaline condition. Best PAH degraders were then assayed to identify the optimal degradation using such parameters as pH, temperature and PAH concentration. Testing for enzyme degradation was also done to determine their baseline information. Extraction and analysis of degraded PAHs were performed using centrifugation and UV-vis spectrophotometry. Results. Twelve isolates from both collection sites tolerated and grew in culture with selected PAHs. These were identified into four genera (Halobacillus, Halomonas, Chromohalobacter, and Pontibacillus). Selected best isolates in a series of biodegradation assays with the above-mentioned parameters were Halobacillus B (Collection of Microbial Strains (CMS) 1802) (=trueperi) (Gram-positive) for pyrene and fluoranthene, and Halomonas A (CMS 1901) (Gram-negative) for fluorene. Degrader biomass and PAH degradation were invariably negatively correlated. Qualitative tests with and without peptone as a nitrogen source implied enzymatic degradation. Discussion. Polycyclic aromatic hydrocarbons utilized by these halophilic bacteria served as a sole source of carbon and energy. Implications of biodegradation of the two best isolates show that high molecular weight (HMW) (4-ring) pyrene tends to be degraded better by Gram-positive bacteria and low molecular weight (3-ring) fluorene by Gram-negative degraders. Conclusions. Halophilic bacteria constitute an untapped natural resource for biotechnology in the Philippines. The present study demonstrated their potential use in bioremediation of recalcitrant hydrocarbons in the environment. Competing Interests. The authors declare no competing financial interests.


Sign in / Sign up

Export Citation Format

Share Document