scholarly journals Characterization of a Mannose-6-Phosphate Isomerase fromThermus thermophilusand Increased l-Ribose Production by Its R142N Mutant

2010 ◽  
Vol 77 (3) ◽  
pp. 762-767 ◽  
Author(s):  
Soo-Jin Yeom ◽  
Eun-Sun Seo ◽  
Bi-Na Kim ◽  
Yeong-Su Kim ◽  
Deok-Kun Oh

ABSTRACTAn uncharacterized gene fromThermus thermophilus, thought to encode a mannose-6-phosphate isomerase, was cloned and expressed inEscherichia coli. The maximal activity of the recombinant enzyme forl-ribulose isomerization was observed at pH 7.0 and 75°C in the presence of 0.5 mM Cu2+. Among all of the pentoses and hexoses evaluated, the enzyme exhibited the highest activity for the conversion ofl-ribulose tol-ribose, a potential starting material for manyl-nucleoside-based pharmaceutical compounds. The active-site residues, predicted according to a homology-based model, were separately replaced with Ala. The residue at position 142 was correlated with an increase inl-ribulose isomerization activity. The R142N mutant showed the highest activity among mutants modified with Ala, Glu, Tyr, Lys, Asn, or Gln. The specific activity and catalytic efficiency (kcat/Km) forl-ribulose using the R142N mutant were 1.4- and 1.6-fold higher than those of the wild-type enzyme, respectively. Thekcat/Kmof the R142N mutant was 3.8-fold higher than that ofGeobacillus thermodenitrificansmannose-6-phosphate isomerase, which exhibited the highest activity to date for the previously reportedkcat/Km. The R142N mutant enzyme produced 213 g/literl-ribose from 300 g/literl-ribulose for 2 h, with a volumetric productivity of 107 g liter−1h−1, which was 1.5-fold higher than that of the wild-type enzyme.

2012 ◽  
Vol 78 (11) ◽  
pp. 3880-3884 ◽  
Author(s):  
Yu-Ri Lim ◽  
Soo-Jin Yeom ◽  
Deok-Kun Oh

ABSTRACTA triple-site variant (W17Q N90A L129F) of mannose-6-phosphate isomerase fromGeobacillus thermodenitrificanswas obtained by combining variants with residue substitutions at different positions after random and site-directed mutagenesis. The specific activity and catalytic efficiency (kcat/Km) forl-ribulose isomerization of this variant were 3.1- and 7.1-fold higher, respectively, than those of the wild-type enzyme at pH 7.0 and 70°C in the presence of 1 mM Co2+. The triple-site variant produced 213 g/literl-ribose from 300 g/literl-ribulose for 60 min, with a volumetric productivity of 213 g liter−1h−1, which was 4.5-fold higher than that of the wild-type enzyme. Thekcat/Kmand productivity of the triple-site variant were approximately 2-fold higher than those of theThermus thermophilusR142N variant of mannose-6-phosphate isomerase, which exhibited the highest values previously reported.


1990 ◽  
Vol 68 (7-8) ◽  
pp. 1037-1044 ◽  
Author(s):  
Peter C. Loewen ◽  
Jacek Switala ◽  
Mark Smolenski ◽  
Barbara L. Triggs-Raine

Hydroperoxidase I (HPI) of Escherichia coli is a bifunctional enzyme exhibiting both catalase and peroxidase activities. Mutants lacking appreciable HPI have been generated using nitrosoguanidine and the gene encoding HPI, katG, has been cloned from three of these mutants using either classical probing methods or polymerase chain reaction amplification. The mutant genes were sequenced and the changes from wild-type sequence identified. Two mutants contained G to A changes in the coding strand, resulting in glycine to aspartate changes at residues 119 (katG15) and 314 (katG16) in the deduced amino acid sequence of the protein. A third mutant contained a C to T change resulting in a leucine to phenylalanine change at residue 139 (katG14). The Phe139-, Asp119-, and Asp314-containing mutants exhibited 13, < 1, and 18%, respectively, of the wild-type catalase specific activity and 43, 4, and 45% of the wild-type peroxidase specific activity. All mutant enzymes bound less protoheme IX than the wild-type enzyme. The sensitivities of the mutant enzymes to the inhibitors hydroxylamine, azide, and cyanide and the activators imidazole and Tris were similar to those of the wild-type enzyme. The mutant enzymes were more sensitive to high temperature and to β-mercaptoethanol than the wild-type enzyme. The pH profiles of the mutant catalases were unchanged from the wild-type enzyme.Key words: catalase, hydroperoxidase I, mutants, sequence analysis.


2014 ◽  
Vol 69 (3-4) ◽  
pp. 149-154 ◽  
Author(s):  
Ina Plagemann ◽  
Ulrich Krings ◽  
Ralf G. Berger

The lipoxygenase LOXPsa1 of Pleurotus sapidus, originally investigated because of its ability to oxidize (+)-valencene to the valuable grapefruit aroma (+)-nootkatone, was isolated from the peptidase-rich lyophilisate using a three-step purification scheme including preparative isoelectric focusing and chromatographic techniques. Nano-liquid chromatography electrospray ionization tandem mass spectrometry (nLC-ESI-MS=MS) of the purified enzyme and peptide mass fingerprint analysis gave 38 peptides of the lipoxygenase from P. sapidus. Nearly 50% of the 643 amino acids long sequence encoded by the cDNA was covered. Both terminal peptides of the native LOXPsa1 were identified by de novo sequencing, and the postulated molecular mass of 72:5 kDa was confirmed. With linoleic acid as the substrate, the LOXPsa1 showed a specific activity of 113 U mg-1 and maximal activity at pH 7.0 and 30 °C, respectively.


2021 ◽  
Vol 1 ◽  
Author(s):  
Eun Young Hong ◽  
Sun-Gu Lee ◽  
Hyungdon Yun ◽  
Byung-Gee Kim

Agmatine, involved in various modulatory actions in cellular mechanisms, is produced from arginine (Arg) by decarboxylation reaction using arginine decarboxylase (ADC, EC 4.1.1.19). The major obstacle of using wild-type Escherichia coli ADC (ADCes) in agmatine production is its sharp activity loss and instability at alkaline pH. Here, to overcome this problem, a new disulfide bond was rationally introduced in the decameric interface region of the enzyme. Among the mutants generated, W16C/D43C increased both thermostability and activity. The half-life (T1/2) of W16C/D43C at pH 8.0 and 60°C was 560 min, which was 280-fold longer than that of the wild-type, and the specific activity at pH 8.0 also increased 2.1-fold. Site-saturation mutagenesis was subsequently performed at the active site residues of ADCes using the disulfide-bond mutant (W16C/D43C) as a template. The best variant W16C/D43C/I258A displayed a 4.4-fold increase in the catalytic efficiency when compared with the wild-type. The final mutant (W16C/D43C/I258A) was successfully applied to in vitro synthesis of agmatine with an improved yield and productivity (&gt;89.0% yield based on 100 mM of Arg within 5  h).


2006 ◽  
Vol 72 (2) ◽  
pp. 981-985 ◽  
Author(s):  
Hye-Jung Kim ◽  
Eun-Kyung Hyun ◽  
Yeong-Su Kim ◽  
Yong-Joo Lee ◽  
Deok-Kun Oh

ABSTRACT The noncharacterized gene previously proposed as the d-tagatose 3-epimerase gene from Agrobacterium tumefaciens was cloned and expressed in Escherichia coli. The expressed enzyme was purified by three-step chromatography with a final specific activity of 8.89 U/mg. The molecular mass of the purified protein was estimated to be 132 kDa of four identical subunits. Mn2+ significantly increased the epimerization rate from d-fructose to d-psicose. The enzyme exhibited maximal activity at 50°C and pH 8.0 with Mn2+. The turnover number (k cat) and catalytic efficiency (k cat/Km ) of the enzyme for d-psicose were markedly higher than those for d-tagatose, suggesting that the enzyme is not d-tagatose 3-epimerase but d-psicose 3-epimerase. The equilibrium ratio between d-psicose and d-fructose was 32:68 at 30°C. d-Psicose was produced at 230 g/liter from 700-g/liter d-fructose at 50°C after 100 min, corresponding to a conversion yield of 32.9%.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mu-Rong Kao ◽  
Su-May Yu ◽  
Tuan-H ua David Ho

Abstract Background β-Glucosidases are essential for cellulose hydrolysis by catalyzing the final cellulolytic degradation of cello-oligomers and cellobiose to glucose. D2-BGL is a fungal glycoside hydrolase family 3 (GH3) β-glucosidase isolated from Chaetomella raphigera with high substrate affinity, and is an efficient β-glucosidase supplement to Trichoderma reesei cellulase mixtures for the saccharification of lignocellulosic biomass. Results We have carried out error-prone PCR to further increase catalytic efficiency of wild-type (WT) D2-BGL. Three mutants, each with substitution of two amino acids on D2-BGL, exhibited increased activity in a preliminary mutant screening in Saccharomyces cerevisiae. Effects of single amino acid replacements on catalysis efficiency and enzyme production have been investigated by subsequent expression in Pichia pastoris. Substitution F256M resulted in enhancing the tolerance to substrate inhibition and specific activity, and substitution D224G resulted in increasing the production of recombinant enzyme. The best D2-BGL mutant generated, Mut M, was constructed by combining beneficial mutations D224G, F256M and Y260D. Expression of Mut M in Pichia pastoris resulted in 2.7-fold higher production of recombinant protein, higher Vmax and greater substrate inhibition tolerance towards cellobiose relative to wild-type enzyme. Surprisingly, Mut M overexpression induced the ER unfolded protein response to a level lower than that with WT D2 overexpression in P. pastoris. When combined with the T. reesei cellulase preparation Celluclast 1.5L, Mut M hydrolyzed acid-pretreated sugarcane bagasse more efficiently than WT D2. Conclusions D2-BGL mutant Mut M was generated successfully by following directed evolution approach. Mut M carries three mutations that are not reported in other directed evolution studies of GH3 β-glucosidases, and this mutant exhibited greater tolerance to substrate inhibition and higher Vmax than wild-type enzyme. Besides the enhanced specific activity, Mut M also exhibited a higher protein titer than WT D2 when it was overexpressed in P. pastoris. Our study demonstrates that both catalytic efficiency and productivity of a cellulolytic enzyme can be enhanced via protein engineering.


1991 ◽  
Vol 277 (3) ◽  
pp. 647-652 ◽  
Author(s):  
F Jacob ◽  
B Joris ◽  
J M Frère

By using site-directed mutagenesis, the active-site serine residue of the Streptomyces albus G beta-lactamase was substituted by alanine and cysteine. Both mutant enzymes were produced in Streptomyces lividans and purified to homogeneity. The cysteine beta-lactamase exhibited a substrate-specificity profile distinct from that of the wild-type enzyme, and its kcat./Km values at pH 7 were never higher than 0.1% of that of the serine enzyme. Unlike the wild-type enzyme, the activity of the mutant increased at acidic pH values. Surprisingly, the alanine mutant exhibited a weak but specific activity for benzylpenicillin and ampicillin. In addition, a very small production of wild-type enzyme, probably due to mistranslation, was detected, but that activity could be selectively eliminated. Both mutant enzymes were nearly as thermostable as the wild-type.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 707-707
Author(s):  
Victoria M Richon ◽  
Christopher J Sneeringer ◽  
Margaret Porter Scott ◽  
Kevin W Kuntz ◽  
Sarah K Knutson ◽  
...  

Abstract Abstract 707 EZH2, the catalytic subunit of the polycomb repressive complex 2 (PRC2), catalyzes the mono- through tri-methylation of lysine 27 on histone H3 (H3K27). While overexpression of EZH2 and increased H3K27 methylation have generally been associated with both hematologic malignancies and solid tumors, inactivating somatic mutations of Tyr641 (Y641F, Y641N, Y641S and Y641H) of EZH2 were recently reported to be associated with follicular lymphoma (FL) and the GCB subtype of diffuse large B-cell lymphoma (DLBCL) (Morin, Nat Genet 2010; 42: 181). In all cases, occurrence of the mutant EZH2 gene was heterozygous, and expression of both wild type and mutant alleles was detected in the mutant samples profiled by transcriptome sequencing. Further, the mutant forms of EZH2 could be incorporated into the multi-protein PRC2 complex, but the resulting complexes lacked the ability to catalyze trimethylation of an unmethylated H3K27 peptide substrate. To explore further the role of EZH2 in lymphomagenesis, we have evaluated the catalytic activity of the mutant EZH2 proteins in greater detail. Recombinant PRC2 complexes were prepared with wild type and Tyr641 mutant EZH2 forms. As previously reported, the wild type enzyme demonstrated robust activity but none of the mutant enzymes displayed significant methyltransferase activity on an unmodified H3K27 peptide. We next evaluated the activity of the enzymes using native avian erythrocyte olignucleosomes as the substrate in the reaction. In contrast to the peptide result, we found that the wild type and all of the mutant enzymes were active methyltransferases against the native nucleosome substrate. Since native nucleosome represents an admixture of the unmodified and mono-, di- and tri-methylated H3K27 we next evaluated the activity of the wild type and mutant enzymes on unmodified, and mono- and di-methylated H3K27 peptide. We demonstrate that the wild type enzyme displays greatest catalytic efficiency (kcat/K) for the zero to mono-methylation reaction of H3K27, and diminished efficiency for subsequent (mono- to di- and di- to tri-methylation) reactions. In stark contrast, the disease-associated Y641 mutants display very limited ability to perform the first methylation reaction, but have enhanced catalytic efficiency for the subsequent reactions, relative to WT-enzyme. Catalytic coupling between the mutant EZH2 species and PRC2 complexes containing either wild type EZH2 or wild type EZH1 are predicted to augment H3K27 trimethylation and thus produce the malignant phenotype associated with mutant heterozygosity. To test this prediction, the level of H3K27 methylation was evaluated in lymphoma cell lines harboring only wild type EZH2 (OCI-LY-19) or heterozygous for EZH2 Y641N (DB, KARPAS and SU-DHL-6) or EZH2 Y641F (WSU-DLCL2) by immunoblotting. As predicted by simulations, the level of H3K27 trimethylation was elevated in all of the lymphoma cell lines harboring the mutant EZH2 relative the wild type. Additionally, we observe decreased H3K27 dimethylation and monomethylation in the cells harboring the mutated EZH2 relative to wild type enzyme; these reductions in di- and monomethylation are likewise consistent with expectations based on steady state kinetic simulations. The present results imply that the malignant phenotype of follicular lymphoma and diffuse large B cell lymphoma of the GCB subtype, associated with expression of mutant forms of EZH2, results from of an overall gain-of-function with respect to formation of the trimethylated form of H3K27. These data suggest that selective, small molecule inhibitors of EZH2 enzymatic function may form a rational underpinning for molecularly targeted therapeutics against mutant-harboring lymphomas and other malignancies in which EZH2 gain-of-function is pathogenic. Disclosures: Richon: Epizyme, Inc: Employment. Sneeringer:Epizyme: Employment. Porter Scott:Epizyme, Inc: Employment. Kuntz:Epizyme, Inc: Employment. Knutson:Epizyme, Inc.: Employment. Pollock:Epizyme, Inc: Employment. Copeland:Epizyme, Inc: Employment.


2009 ◽  
Vol 31 (8) ◽  
pp. 1273-1278 ◽  
Author(s):  
Soo-Jin Yeom ◽  
Nam-Hee Kim ◽  
Ran-Young Yoon ◽  
Hyun-Jung Kwon ◽  
Chang-Su Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document