scholarly journals Biofilm Formation by Campylobacter jejuni Is Increased under Aerobic Conditions

2010 ◽  
Vol 76 (7) ◽  
pp. 2122-2128 ◽  
Author(s):  
Mark Reuter ◽  
Arthur Mallett ◽  
Bruce M. Pearson ◽  
Arnoud H. M. van Vliet

ABSTRACT The microaerophilic human pathogen Campylobacter jejuni is the leading cause of food-borne bacterial gastroenteritis in the developed world. During transmission through the food chain and the environment, the organism must survive stressful environmental conditions, particularly high oxygen levels. Biofilm formation has been suggested to play a role in the environmental survival of this organism. In this work we show that C. jejuni NCTC 11168 biofilms developed more rapidly under environmental and food-chain-relevant aerobic conditions (20% O2) than under microaerobic conditions (5% O2, 10% CO2), although final levels of biofilms were comparable after 3 days. Staining of biofilms with Congo red gave results similar to those obtained with the commonly used crystal violet staining. The level of biofilm formation by nonmotile aflagellate strains was lower than that observed for the motile flagellated strain but nonetheless increased under aerobic conditions, suggesting the presence of flagellum-dependent and flagellum-independent mechanisms of biofilm formation in C. jejuni. Moreover, preformed biofilms shed high numbers of viable C. jejuni cells into the culture supernatant independently of the oxygen concentration, suggesting a continuous passive release of cells into the medium rather than a condition-specific active mechanism of dispersal. We conclude that under aerobic or stressful conditions, C. jejuni adapts to a biofilm lifestyle, allowing survival under detrimental conditions, and that such a biofilm can function as a reservoir of viable planktonic cells. The increased level of biofilm formation under aerobic conditions is likely to be an adaptation contributing to the zoonotic lifestyle of C. jejuni.

2014 ◽  
Vol 80 (22) ◽  
pp. 7053-7060 ◽  
Author(s):  
Helen L. Brown ◽  
Mark Reuter ◽  
Louise J. Salt ◽  
Kathryn L. Cross ◽  
Roy P. Betts ◽  
...  

ABSTRACTThe bacterial pathogenCampylobacter jejuniis primarily transmitted via the consumption of contaminated foodstuffs, especially poultry meat. In food processing environments,C. jejuniis required to survive a multitude of stresses and requires the use of specific survival mechanisms, such as biofilms. An initial step in biofilm formation is bacterial attachment to a surface. Here, we investigated the effects of a chicken meat exudate (chicken juice) onC. jejunisurface attachment and biofilm formation. Supplementation of brucella broth with ≥5% chicken juice resulted in increased biofilm formation on glass, polystyrene, and stainless steel surfaces with fourC. jejuniisolates and oneC. coliisolate in both microaerobic and aerobic conditions. When incubated with chicken juice,C. jejuniwas both able to grow and form biofilms in static cultures in aerobic conditions. Electron microscopy showed thatC. jejunicells were associated with chicken juice particulates attached to the abiotic surface rather than the surface itself. This suggests that chicken juice contributes toC. jejunibiofilm formation by covering and conditioning the abiotic surface and is a source of nutrients. Chicken juice was able to complement the reduction in biofilm formation of an aflagellated mutant ofC. jejuni, indicating that chicken juice may support food chain transmission of isolates with lowered motility. We provide here a useful model for studying the interaction ofC. jejunibiofilms in food chain-relevant conditions and also show a possible mechanism forC. jejunicell attachment and biofilm initiation on abiotic surfaces within the food chain.


2020 ◽  
Vol 8 (3) ◽  
pp. 452 ◽  
Author(s):  
Greg Tram ◽  
Christopher J. Day ◽  
Victoria Korolik

Campylobacter jejuni is the leading cause of bacterial gastroenteritis in the developed world. Cases of Campylobacteriosis are common, as the organism is an avian commensal and is passed on to humans through contaminated poultry meat, water, and food preparation areas. Although typically a fastidious organism, C. jejuni can survive outside the avian intestinal tract until it is able to reach a human host. It has long been considered that biofilms play a key role in transmission of this pathogen. The aim of this review is to examine factors that trigger biofilm formation in C. jejuni. A range of environmental elements have been shown to initiate biofilm formation, which are then affected by a suite of intrinsic factors. We also aim to further investigate the role that biofilms may play in the life cycle of this organism.


2005 ◽  
Vol 71 (6) ◽  
pp. 3205-3212 ◽  
Author(s):  
Lone Brøndsted ◽  
Marianne Thorup Andersen ◽  
Mary Parker ◽  
Kirsten Jørgensen ◽  
Hanne Ingmer

ABSTRACT Campylobacter jejuni is a predominant cause of food-borne bacterial gastroenteritis in the developed world. We have investigated the importance of a homologue of the periplasmic HtrA protease in C. jejuni stress tolerance. A C. jejuni htrA mutant was constructed and compared to the parental strain, and we found that growth of the mutant was severely impaired both at 44°C and in the presence of the tRNA analogue puromycin. Under both conditions, the level of misfolded protein is known to increase, and we propose that the heat-sensitive phenotype of the htrA mutant is caused by an accumulation of misfolded protein in the periplasm. Interestingly, we observed that the level of the molecular chaperones DnaK and ClpB was increased in the htrA mutant, suggesting that accumulation of nonnative proteins in the periplasm induces the expression of cytoplasmic chaperones. While lack of HtrA reduces the oxygen tolerance of C. jejuni, the htrA mutant was not sensitive to compounds that increase the formation of oxygen radicals, such as paraquat, cumene hydroperoxide, and H2O2. Using tissue cultures of human epithelial cells (INT407), we found that the htrA mutant adhered to and invaded human epithelial cells with a decreased frequency compared to the wild-type strain. This defect may be a consequence of the observed altered morphology of the htrA mutant. Thus, our results suggest that in C. jejuni, HtrA is important for growth during stressful conditions and has an impact on virulence.


2011 ◽  
Vol 77 (10) ◽  
pp. 3320-3326 ◽  
Author(s):  
Patcharin Siringan ◽  
Phillippa L. Connerton ◽  
Robert J. H. Payne ◽  
Ian F. Connerton

ABSTRACTBacteria in their natural environments frequently exist as mixed surface-associated communities, protected by extracellular material, termed biofilms. Biofilms formed by the human pathogenCampylobacter jejunimay arise in the gastrointestinal tract of animals but also in water pipes and other industrial situations, leading to their possible transmission into the human food chain either directly or via farm animals. Bacteriophages are natural predators of bacteria that usually kill their prey by cell lysis and have potential application for the biocontrol and dispersal of target bacteria in biofilms. The effects of virulentCampylobacterspecific-bacteriophages CP8 and CP30 onC. jejunibiofilms formed on glass by strains NCTC 11168 and PT14 at 37°C under microaerobic conditions were investigated. Independent bacteriophage treatments (n≥ 3) led to 1 to 3 log10CFU/cm2reductions in the viable count 24 h postinfection compared with control levels. In contrast, bacteriophages applied under these conditions effected a reduction of less than 1 log10CFU/ml in planktonic cells. Resistance to bacteriophage in bacteria surviving bacteriophage treatment ofC. jejuniNCTC 11168 biofilms was 84% and 90% for CP8 and CP30, respectively, whereas bacteriophage resistance was not found in similarly recoveredC. jejuniPT14 cells. Dispersal of the biofilm matrix by bacteriophage was demonstrated by crystal violet staining and transmission electron microscopy. Bacteriophage may play an important role in the control of attachment and biofilm formation byCampylobacterin situations where biofilms occur in nature, and they have the potential for application in industrial situations leading to improvements in food safety.


2020 ◽  
Vol 367 (20) ◽  
Author(s):  
Meghan Wymore Brand ◽  
Orhan Sahin ◽  
Jesse M Hostetter ◽  
Julian Trachsel ◽  
Qijing Zhang ◽  
...  

ABSTRACT Campylobacter jejuni is a major cause of food-borne human bacterial gastroenteritis but animal models for C. jejuni mediated disease remain limited because C. jejuni poorly colonizes immunocompetent, conventionally-reared (Conv-R) mice. Thus, a reliable rodent model (i.e. persistent colonization) is desirable in order to evaluate C. jejuni-mediated gastrointestinal disease and mechanisms of pathogenicity. As the nature and complexity of the microbiota likely impacts colonization resistance for C. jejuni, Conv-R and gnotobiotic C3H/HeN mice were used to evaluate the persistence of C. jejuni colonization and development of disease. A total of four C. jejuni isolates readily and persistently colonized ASF mice and induced mild mucosal inflammation in the proximal colon, but C. jejuni did not stably colonize nor induce lesions in Conv-R mice. This suggests that the pathogenesis of C. jejuni is influenced by the microbiota, and that ASF mice offer a reproducible model to study the influence of the microbiota on the ability of C. jejuni to colonize the gut and to mediate gastroenteritis.


2017 ◽  
Vol 5 (5) ◽  
Author(s):  
Sarah E. Macdonald ◽  
Ozan Gundogdu ◽  
Nick Dorrell ◽  
Brendan W. Wren ◽  
Damer Blake ◽  
...  

ABSTRACT Campylobacter jejuni is the most prevalent cause of food-borne gastroenteritis in the developed world. The reference and original sequenced strain C. jejuni NCTC11168 has low levels of motility compared to clinical isolates. Here, we describe the draft genome of the laboratory derived hypermotile variant named 11168H.


2021 ◽  
Vol 22 (22) ◽  
pp. 12159
Author(s):  
Bassam A. Elgamoudi ◽  
Victoria Korolik

Microbial biofilms occur naturally in many environmental niches and can be a significant reservoir of infectious microbes in zoonotically transmitted diseases such as that caused by Campylobacter jejuni, the leading cause of acute human bacterial gastroenteritis world-wide. The greatest challenge in reducing the disease caused by this organism is reducing transmission of C. jejuni to humans from poultry via the food chain. Biofilms enhance the stress tolerance and antimicrobial resistance of the microorganisms they harbor and are considered to play a crucial role for Campylobacter spp. survival and transmission to humans. Unconventional approaches to control biofilms and to improve the efficacy of currently used antibiotics are urgently needed. This review summarizes the use plant- and microorganism-derived antimicrobial and antibiofilm compounds such as essential oils, antimicrobial peptides (AMPs), polyphenolic extracts, algae extracts, probiotic-derived factors, d-amino acids (DAs) and glycolipid biosurfactants with potential to control biofilms formed by Campylobacter, and the suggested mechanisms of their action. Further investigation and use of such natural compounds could improve preventative and remedial strategies aimed to limit the transmission of campylobacters and other human pathogens via the food chain.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xian Zhong ◽  
Qingping Wu ◽  
Jumei Zhang ◽  
Zonghao Ma ◽  
Juan Wang ◽  
...  

2016 ◽  
Vol 7 ◽  
Author(s):  
Vicky Bronnec ◽  
Hana Turoňová ◽  
Agnès Bouju ◽  
Stéphane Cruveiller ◽  
Ramila Rodrigues ◽  
...  

2015 ◽  
Vol 83 (12) ◽  
pp. 4884-4895 ◽  
Author(s):  
Waheed Jowiya ◽  
Katja Brunner ◽  
Sherif Abouelhadid ◽  
Haitham A. Hussain ◽  
Sean P. Nair ◽  
...  

Campylobacter jejuniis a commensal bacterium in the intestines of animals and birds and a major cause of food-borne gastroenteritis in humans worldwide. Here we show that exposure to pancreatic amylase leads to secretion of an α-dextran byC. jejuniand that a secreted protease, Cj0511, is required. Exposure ofC. jejunito pancreatic amylase promotes biofilm formationin vitro, increases interaction with human epithelial cell lines, increases virulence in theGalleria mellonellainfection model, and promotes colonization of the chicken ileum. We also show that exposure to pancreatic amylase protectsC. jejunifrom stress conditionsin vitro, suggesting that the induced α-dextran may be important during transmission between hosts. This is the first evidence that pancreatic amylase functions as an interkingdom signal in an enteric microorganism.


Sign in / Sign up

Export Citation Format

Share Document