scholarly journals Bacillus velezensisWall Teichoic Acids Are Required for Biofilm Formation and Root Colonization

2018 ◽  
Vol 85 (5) ◽  
Author(s):  
Zhihui Xu ◽  
Huihui Zhang ◽  
Xinli Sun ◽  
Yan Liu ◽  
Wuxia Yan ◽  
...  

ABSTRACTRhizosphere colonization by plant growth-promoting rhizobacteria (PGPR) along plant roots facilitates the ability of PGPR to promote plant growth and health. Thus, an understanding of the molecular mechanisms of the root colonization process by plant-beneficialBacillusstrains is essential for the use of these strains in agriculture. Here, we observed that ansfpgene mutant of the plant growth-promoting rhizobacteriumBacillus velezensisSQR9 was unable to form normal biofilm architecture, and differential protein expression was observed by proteomic analysis. A minor wall teichoic acid (WTA) biosynthetic protein, GgaA, was decreased over 4-fold in the Δsfpmutant, and impairment of theggaAgene postponed biofilm formation and decreased cucumber root colonization capabilities. In addition, we provide evidence that the major WTA biosynthetic enzyme GtaB is involved in both biofilm formation and root colonization. The deficiency in biofilm formation of the ΔgtaBmutant may be due to an absence of UDP-glucose, which is necessary for the synthesis of biofilm matrix exopolysaccharides (EPS). These observations provide insights into the root colonization process by a plant-beneficialBacillusstrain, which will help improve its application as a biofertilizer.IMPORTANCEBacillus velezensisis a Gram-positive plant-beneficial bacterium which is widely used in agriculture. Additionally,Bacillusspp. are some of the model organisms used in the study of biofilms, and as such, the molecular networks and regulation systems of biofilm formation are well characterized. However, the molecular processes involved in root colonization by plant-beneficialBacillusstrains remain largely unknown. Here, we showed that WTAs play important roles in the plant root colonization process. The loss of thegtaBgene affects the ability ofB. velezensisSQR9 to sense plant polysaccharides, which are important environmental cues that trigger biofilm formation and colonization in the rhizosphere. This knowledge provides new insights into theBacillusroot colonization process and can help improve our understanding of plant-rhizobacterium interactions.

2018 ◽  
Vol 6 (21) ◽  
Author(s):  
Wei-Jian Kong ◽  
Yong-Cai Yan ◽  
Xiang-Ying Li ◽  
Zhen-Yu Liu

ABSTRACT Bacillus velezensis PEBA20 is a poplar endophyte with biocontrol activities and plant growth-promoting effects. The genome of B. velezensis PEBA20 was sequenced and the draft genome assembled, with a length of 4,249,176 bp and 4,487 genes.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. e03078-20
Author(s):  
Fernanda Plucani do Amaral ◽  
Thalita Regina Tuleski ◽  
Vania Carla Silva Pankievicz ◽  
Ryan A. Melnyk ◽  
Adam P. Arkin ◽  
...  

ABSTRACTThe plant rhizosphere harbors a diverse population of microorganisms, including beneficial plant growth-promoting bacteria (PGPB), that colonize plant roots and enhance growth and productivity. In order to specifically define bacterial traits that contribute to this beneficial interaction, we used high-throughput transposon mutagenesis sequencing (TnSeq) in two model root-bacterium systems associated with Setaria viridis: Azoarcus olearius DQS4T and Herbaspirillum seropedicae SmR1. This approach identified ∼100 significant genes for each bacterium that appeared to confer a competitive advantage for root colonization. Most of the genes identified specifically in A. olearius encoded metabolism functions, whereas genes identified in H. seropedicae were motility related, suggesting that each strain requires unique functions for competitive root colonization. Genes were experimentally validated by site-directed mutagenesis, followed by inoculation of the mutated bacteria onto S. viridis roots individually, as well as in competition with the wild-type strain. The results identify key bacterial functions involved in iron uptake, polyhydroxybutyrate metabolism, and regulation of aromatic metabolism as important for root colonization. The hope is that by improving our understanding of the molecular mechanisms used by PGPB to colonize plants, we can increase the adoption of these bacteria in agriculture to improve the sustainability of modern cropping systems.IMPORTANCE There is growing interest in the use of associative, plant growth-promoting bacteria (PGPB) as biofertilizers to serve as a sustainable alternative for agriculture application. While a variety of mechanisms have been proposed to explain bacterial plant growth promotion, the molecular details of this process remain unclear. The current research supports the idea that PGPB use in agriculture will be promoted by gaining more knowledge as to how these bacteria colonize plants, promote growth, and do so consistently. Specifically, the research seeks to identify those bacterial genes involved in the ability of two, PGPB strains, Azoarcus olearius and Herbaspirillum seropedicae, to colonize the roots of the C4 model grass Setaria viridis. Applying a transposon mutagenesis (TnSeq) approach, we assigned phenotypes and function to genes that affect bacterial competitiveness during root colonization. The results suggest that each bacterial strain requires unique functions for root colonization but also suggests that a few, critical functions are needed by both bacteria, pointing to some common mechanisms. The hope is that such information can be exploited to improve the use and performance of PGPB in agriculture.


2019 ◽  
Vol 85 (10) ◽  
Author(s):  
Shuyu Li ◽  
Hong Liang ◽  
Zhiyan Wei ◽  
Haonan Bai ◽  
Mengyun Li ◽  
...  

ABSTRACTAdaptation to osmotic stress is crucial for bacterial growth and survival in changing environments. Although a large number of osmotic stress response genes have been identified in various bacterial species, how osmotic changes affect bacterial motility, biofilm formation, and colonization of host niches remains largely unknown. In this study, we report that the LrhA regulator is an osmoregulated transcription factor that directly binds to the promoters of theflhDC,eps, andopgGHoperons and differentially regulates their expression, thus inhibiting motility and promoting exopolysaccharide (EPS) production, synthesis of osmoregulated periplasmic glucans (OPGs), biofilm formation, and root colonization of the plant growth-promoting bacteriumPantoea alhagiLTYR-11Z. Further, we observed that the LrhA-regulated OPGs control RcsCD-RcsB activation in a concentration-dependent manner, and a high concentration of OPGs induced by increased medium osmolarity is maintained to achieve the high level of activation of the Rcs phosphorelay, which results in enhanced EPS synthesis and decreased motility inP. alhagi. Moreover, we showed that the osmosensing regulator OmpR directly binds to the promoter oflrhAand promotes its expression, whilelrhAexpression is feedback inhibited by the activated Rcs phosphorelay system. Overall, our data support a model wherebyP. alhagisenses environmental osmolarity changes through the EnvZ-OmpR two-component system and LrhA to regulate the synthesis of OPGs, EPS production, and flagellum-dependent motility, thereby employing a hierarchical signaling cascade to control the transition between a motile lifestyle and a biofilm lifestyle.IMPORTANCEMany motile bacterial populations form surface-attached biofilms in response to specific environmental cues, including osmotic stress in a range of natural and host-related systems. However, cross talk between bacterial osmosensing, swimming, and biofilm formation regulatory networks is not fully understood. Here, we report that the pleiotropic regulator LrhA inPantoea alhagiis involved in the regulation of flagellar motility, biofilm formation, and host colonization and responds to osmotic upshift. We further show that this sensing relies on the EnvZ-OmpR two-component system that was known to detect changes in external osmotic stress. The EnvZ-OmpR-LrhA osmosensing signal transduction cascade is proposed to increase bacterial fitness under hyperosmotic conditions inside the host. Our work proposes a novel regulatory mechanism that links osmosensing and motile-sessile lifestyle transitions, which may provide new approaches to prevent or promote the formation of biofilms and host colonization inP. alhagiand other bacteria possessing a similar osmoregulatory mechanism.


2020 ◽  
Vol 9 (30) ◽  
Author(s):  
Alexey V. Garkovenko ◽  
Ilya Y. Vasilyev ◽  
Elena V. Ilnitskaya ◽  
Vitaly V. Radchenko ◽  
Anzhela M. Asaturova ◽  
...  

ABSTRACT Bacillus velezensis strain BZR 336g is a plant growth-promoting rhizobacterium isolated from a winter wheat rhizoplane from the Krasnodar region in Russia. In this study, we report the genome, including genes with known phenotypic function, i.e., the biosynthesis of secondary metabolites with fungicidal and plant growth-promoting activities. We sequenced and analyzed the complete BZR 336g genome using two different DNA preparation methods to help us better understand the origin of the antimicrobial and antifungal abilities and to weigh the biocontrol properties of this strain.


2019 ◽  
Vol 8 (8) ◽  
Author(s):  
Jian Zhao ◽  
Hu Liu ◽  
Kai Liu ◽  
Hao Li ◽  
Yulong Peng ◽  
...  

Bacillus velezensis DSYZ is a plant growth-promoting rhizobacterium with the capacity to control fungal pathogens. It was isolated from the rhizosphere soil of garlic.


2020 ◽  
Vol 9 (40) ◽  
Author(s):  
Vitaly V. Radchenko ◽  
Ilya Y. Vasilyev ◽  
Elena V. Ilnitskaya ◽  
Alexey V. Garkovenko ◽  
Anzhela M. Asaturova ◽  
...  

ABSTRACT Bacillus velezensis strain BZR 517 is a prospective plant growth-promoting rhizobacterium with known biocontrol properties, which may be used to improve soil quality. The genome sequencing was conducted as part of new biological agent development in order to determine the biocontrol potential of the strain, including the production of biologically active compounds.


2017 ◽  
Vol 5 (33) ◽  
Author(s):  
Hidehiro Ishizawa ◽  
Masashi Kuroda ◽  
Michihiko Ike

ABSTRACT Aquitalea magnusonii strain H3 is a promising plant growth-promoting bacterium for duckweed. Here, we report the draft genome sequence of strain H3 comprising 4,750,601 bp in 73 contigs. Several genes associated with plant root colonization were identified.


2018 ◽  
Vol 6 (12) ◽  
Author(s):  
Zhenghua Li ◽  
Mei Chen ◽  
Kun Ran ◽  
Jihua Wang ◽  
Qiangcheng Zeng ◽  
...  

ABSTRACT The plant growth-promoting rhizobacterium Bacillus velezensis strain Lzh-a42, which has antimicrobial activity, was isolated from tomato rhizosphere. Here, we report its genome sequence, which includes several predicted functional genes related to secondary metabolite biosynthesis, antimicrobial activity, and biofilm synthesis.


2017 ◽  
Vol 5 (48) ◽  
Author(s):  
Surachat Sibponkrung ◽  
Takahiko Kondo ◽  
Kosei Tanaka ◽  
Panlada Tittabutr ◽  
Nantakorn Boonkerd ◽  
...  

ABSTRACT Bacillus velezensis strain S141 is a plant growth-promoting rhizobacterium isolated from soybean (Glycine max) rhizosphere that enhances soybean growth, nodulation, and N2 fixation efficiency by coinoculation with Bradyrhizobium diazoefficiens USDA110. The S141 genome was identified to comprise a 3,974,582-bp-long circular DNA sequence encoding at least 3,817 proteins.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Vladimir K. Chebotar ◽  
Gerben P. Voshol ◽  
Natalia V. Malfanova ◽  
Elena P. Chizhevskaya ◽  
Alexander N. Zaplatkin ◽  
...  

ABSTRACT The plant growth-promoting bacterium Bacillus velezensis BS89 was isolated from the rhizosphere of winter wheat. Strain BS89 has the ability to promote plant growth and produce a mix of auxins and vitamins. Here, we sequenced the complete genome of this strain to understand the molecular mechanisms underlying its beneficial activities.


Sign in / Sign up

Export Citation Format

Share Document