scholarly journals Comparing Metabolic Functionalities, Community Structures, and Dynamics of Herbicide-Degrading Communities Cultivated with Different Substrate Concentrations

2012 ◽  
Vol 79 (1) ◽  
pp. 367-375 ◽  
Author(s):  
Erkin Gözdereliler ◽  
Nico Boon ◽  
Jens Aamand ◽  
Karen De Roy ◽  
Michael S. Granitsiotis ◽  
...  

ABSTRACTTwo 4-chloro-2-methylphenoxyacetic acid (MCPA)-degrading enrichment cultures selected from an aquifer on low (0.1 mg liter−1) or high (25 mg liter−1) MCPA concentrations were compared in terms of metabolic activity, community composition, population growth, and single cell physiology. Different community compositions and major shifts in community structure following exposure to different MCPA concentrations were observed using both 16S rRNA gene denaturing gradient gel electrophoresis fingerprinting and pyrosequencing. The communities also differed in their MCPA-mineralizing activities. The enrichments selected on low concentrations mineralized MCPA with shorter lag phases than those selected on high concentrations. Flow cytometry measurements revealed that mineralization led to cell growth. The presence of low-nucleic acid-content bacteria (LNA bacteria) was correlated with mineralization activity in cultures selected on low herbicide concentrations. This suggests that LNA bacteria may play a role in degradation of low herbicide concentrations in aquifers impacted by agriculture. This study shows that subpopulations of herbicide-degrading bacteria that are adapted to different pesticide concentrations can coexist in the same environment and that using a low herbicide concentration enables enrichment of apparently oligotrophic subpopulations.

2007 ◽  
Vol 74 (4) ◽  
pp. 1176-1182 ◽  
Author(s):  
Edward J. Hilyard ◽  
Joanne M. Jones-Meehan ◽  
Barry J. Spargo ◽  
Russell T. Hill

ABSTRACT The diversity of indigenous bacteria in sediments from several sites in the Elizabeth River (Virginia) able to degrade multiple polycyclic aromatic hydrocarbons (PAHs) was investigated by the use of classical selective enrichment and molecular analyses. Enrichment cultures containing naphthalene, phenanthrene, fluoranthene, or pyrene as a sole carbon and energy source were monitored by denaturing gradient gel electrophoresis (DGGE) to detect changes in the bacterial-community profile during enrichment and to determine whether the representative strains present were successfully cultured. The DGGE profiles of the final enrichments grown solely on naphthalene and pyrene showed no clear relationship with the site from which the inoculum was obtained. The enrichments grown solely on pyrene for two sample sites had >80% similarity, which suggests that common pyrene-degrading strains may be present in these sediments. The final enrichments grown on fluoranthene and phenanthrene remained diverse by site, suggesting that these strains may be influenced by environmental conditions. One hundred and one isolates were obtained, comprising representatives of the actinomycetes and alpha-, beta-, and gammaproteobacteria, including seven novel isolates with 16S rRNA gene sequences less than 98% similar to known strains. The ability to degrade multiple PAHs was demonstrated by mineralization of 14C-labeled substrate and growth in pure culture. This supports our hypothesis that a high diversity of bacterial strains with the ability to degrade multiple PAHs can be confirmed by the combined use of classical selective enrichment and molecular analyses. This large collection of diverse PAH-degrading strains provides a valuable resource for studies on mechanisms of PAH degradation and bioremediation.


2011 ◽  
Vol 3 (1) ◽  
Author(s):  
Lies Indah Sutiknowati

There is an information how to identify hydrocarbon degrading bacteria for bioremediation of marine oil spill. We have Bioremediation treatment for degradation of oil spill on Pari island and need two kind of experiment there are tanks experiment (sampling 0 to 90 days) and semi enclosed system (sampling 0 to 150 days). Biostimulation with nutrients (N and P) was done to analyze biodegradation of hydrocarbon compounds. Experiment design using fertilizer Super IB and Linstar will stimulate bacteria can degrade oil, n-alkane, and alkane as poly aromatic hydrocarbon. The bacteria communities were monitored and analyzed by Denaturing Gradient Gel Electrophoresis (DGGE) and Clone Library; oil chemistry was analyzed by Gas Chromatography Mass Spectrometry (GCMS). DNA (deoxyribonucleic acid) was extracted from colonies of bacteria and sequence determination of the 16S rDNA was amplified by primers U515f and U1492r. Strains had been sequence and had similarity about 90-99% to their closest taxa by homology Blast search and few of them suspected as new species. The results showed that fertilizers gave a significant effect on alkane, PAH and oil degradation in tanks experiment but not in the field test. Dominant of the specific bacteria on this experiment were Alcanivorax, Marinobacter and Prosthecochloris. Keywords: Bioremediation, Biostimulation, DGGE, PAH, Pari Island


2003 ◽  
Vol 69 (11) ◽  
pp. 6380-6385 ◽  
Author(s):  
R. Temmerman ◽  
L. Masco ◽  
T. Vanhoutte ◽  
G. Huys ◽  
J. Swings

ABSTRACT The taxonomic characterization of a bacterial community is difficult to combine with the monitoring of its temporal changes. None of the currently available identification techniques are able to visualize a “complete” community, whereas techniques designed for analyzing bacterial ecosystems generally display limited or labor-intensive identification potential. This paper describes the optimization and validation of a nested-PCR-denaturing gradient gel electrophoresis (DGGE) approach for the species-specific analysis of bifidobacterial communities from any ecosystem. The method comprises a Bifidobacterium-specific PCR step, followed by purification of the amplicons that serve as template DNA in a second PCR step that amplifies the V3 and V6-V8 regions of the 16S rRNA gene. A mix of both amplicons is analyzed on a DGGE gel, after which the band positions are compared with a previously constructed database of reference strains. The method was validated through the analysis of four artificial mixtures, mimicking the possible bifidobacterial microbiota of the human and chicken intestine, a rumen, and the environment, and of two fecal samples. Except for the species Bifidobacterium coryneforme and B. indicum, all currently known bifidobacteria originating from various ecosystems can be identified in a highly reproducible manner. Because no further cloning and sequencing of the DGGE bands is necessary, this nested-PCR-DGGE technique can be completed within a 24-h span, allowing the species-specific monitoring of temporal changes in the bifidobacterial community.


2006 ◽  
Vol 72 (10) ◽  
pp. 6452-6460 ◽  
Author(s):  
Paul J. Hunter ◽  
Geoff M. Petch ◽  
Leo A. Calvo-Bado ◽  
Tim R. Pettitt ◽  
Nick R. Parsons ◽  
...  

ABSTRACT The microbiological characteristics associated with disease-suppressive peats are unclear. We used a bioassay for Pythium sylvaticum-induced damping-off of cress seedlings to identify conducive and suppressive peats. Microbial activity in unconditioned peats was negatively correlated with the counts of P. sylvaticum at the end of the bioassay. Denaturing gradient gel electrophoresis (DGGE) profiling and clone library analyses of small-subunit rRNA gene sequences from two suppressive and two conducive peats differed in the bacterial profiles generated and the diversity of sequence populations. There were also significant differences between bacterial sequence populations from suppressive and conducive peats. The frequencies of a number of microbial groups, including the Rhizobium-Agrobacterium group (specifically sequences similar to those for the genera Ochrobactrum and Zoogloea) and the Acidobacteria, increased specifically in the suppressive peats, although no single bacterial group was associated with disease suppression. Fungal DGGE profiles varied little over the course of the bioassay; however, two bands associated specifically with suppressive samples were detected. Sequences from these bands corresponded to Basidiomycete yeast genera. Although the DGGE profiles were similar, fungal sequence diversity also increased during the bioassay. Sequences highly similar to those of Cryptococcus increased in relative abundance during the bioassay, particularly in the suppressive samples. This study highlights the importance of using complementary approaches to molecular profiling of complex populations and provides the first report that basidiomycetous yeasts may be associated with the suppression of Pythium-induced diseases in peats.


2011 ◽  
Vol 3 (1) ◽  
Author(s):  
Lies Indah Sutiknowati

There is an information how to identify hydrocarbon degrading bacteria for bioremediation of marine oil spill. We have Bioremediation treatment for degradation of oil spill on Pari island and need two kind of experiment there are tanks experiment (sampling 0 to 90 days) and semi enclosed system (sampling 0 to 150 days). Biostimulation with nutrients (N and P) was done to analyze biodegradation of hydrocarbon compounds. Experiment design using fertilizer Super IB and Linstar will stimulate bacteria can degrade oil, n-alkane, and alkane as poly aromatic hydrocarbon. The bacteria communities were monitored and analyzed by Denaturing Gradient Gel Electrophoresis (DGGE) and Clone Library; oil chemistry was analyzed by Gas Chromatography Mass Spectrometry (GCMS). DNA (deoxyribonucleic acid) was extracted from colonies of bacteria and sequence determination of the 16S rDNA was amplified by primers U515f and U1492r. Strains had been sequence and had similarity about 90-99% to their closest taxa by homology Blast search and few of them suspected as new species. The results showed that fertilizers gave a significant effect on alkane, PAH and oil degradation in tanks experiment but not in the field test. Dominant of the specific bacteria on this experiment were Alcanivorax, Marinobacter and Prosthecochloris. Keywords: Bioremediation, Biostimulation, DGGE, PAH, Pari Island


Author(s):  
Marcial-Quino J. ◽  
Garcia-Ocón B. ◽  
Mendoza-Espinoza J.A. ◽  
Gómez-Manzo S. ◽  
Sierra-Palacios E

Currently it is well known that yeasts play an essential role in the production of different beverages. In this paper, were identified some of the yeasts involved in the fermentation process of the pulque, a Mexican traditional beverage. Samples were collected from different regions of Mexico and yeasts were detected directly from samples without cultivation. Identifying the yeasts was obtained using amplification the D1/D2 domain of the 26S rRNA gene and Denaturing Gradient Gel Electrophoresis (DGGE). The results of DGGE showed different profiles of bands in each of the analyzed samples, indicating the presence of several species of yeast, which was also confirmed by sequencing of the bands corresponding to the domain D1/D2, succeeded in identifying five species of yeasts. The results obtained in this work demonstrated that the technique used for identification of yeasts of pulque was efficient. Besides, the optimization of this method could also allow rapid identification of yeasts and help understand the role of these in the fermentation process of this beverage, as well as the isolation of strains of interest for biotechnological purposes such as production of ethanol or metabolites with nutraceutical activity.


2001 ◽  
Vol 67 (11) ◽  
pp. 5113-5121 ◽  
Author(s):  
Luca Cocolin ◽  
Marisa Manzano ◽  
Carlo Cantoni ◽  
Giuseppe Comi

ABSTRACT In this study, a PCR-denaturing gradient gel electrophoresis (DGGE) protocol was used to monitor the dynamic changes in the microbial population during ripening of natural fermented sausages. The method was first optimized by using control strains from international collections, and a natural sausage fermentation was studied by PCR-DGGE and traditional methods. Total microbial DNA and RNA were extracted directly from the sausages and subjected to PCR and reverse transcription-PCR, and the amplicons obtained were analyzed by DGGE. Lactic acid bacteria (LAB) were present together with other organisms, mainly members of the family Micrococcaceae and meat contaminants, such as Brochothrix thermosphacta andEnterococcus sp., during the first 3 days of fermentation. After 3 days, LAB represented the main population, which was responsible for the acidification and proteolysis that determined the characteristic organoleptic profile of the Friuli Venezia Giulia fermented sausages. The PCR-DGGE protocol for studying sausage fermentation proved to be a good tool for monitoring the process in real time, and it makes technological adjustments possible when they are required.


2001 ◽  
Vol 43 (1) ◽  
pp. 77-82 ◽  
Author(s):  
O.-C. Chan ◽  
W.-T. Liu ◽  
H. H. Fang

The microbial community structure of granular sludge from an upflow anaerobic sludge blanket (UASB) reactor treating brewery effluent was studied by denaturing gradient gel electrophoresis (DGGE). Twelve major bands were observed in the DGGE fingerprint for the Bacteria domain and four bands for the Archaea domain. Of the bacterial bands observed, six were successfully purified and sequenced. Among them, three were related to the gram-positive low G+C group, one to the Delta subclass of the Proteobacteria, one to the Gamma subclass, and one to the Cytophaga group with no close related sequence. The 16S rRNA sequences of the four archaeal bands were closely associated with Methanosaeta concilii and Methanobacterium formicum.


2000 ◽  
Vol 66 (7) ◽  
pp. 2959-2964 ◽  
Author(s):  
Gregory M. Colores ◽  
Richard E. Macur ◽  
David M. Ward ◽  
William P. Inskeep

ABSTRACT We analyzed the impact of surfactant addition on hydrocarbon mineralization kinetics and the associated population shifts of hydrocarbon-degrading microorganisms in soil. A mixture of radiolabeled hexadecane and phenanthrene was added to batch soil vessels. Witconol SN70 (a nonionic, alcohol ethoxylate) was added in concentrations that bracketed the critical micelle concentration (CMC) in soil (CMC′) (determined to be 13 mg g−1). Addition of the surfactant at a concentration below the CMC′ (2 mg g−1) did not affect the mineralization rates of either hydrocarbon. However, when surfactant was added at a concentration approaching the CMC′ (10 mg g−1), hexadecane mineralization was delayed and phenanthrene mineralization was completely inhibited. Addition of surfactant at concentrations above the CMC′ (40 mg g−1) completely inhibited mineralization of both phenanthrene and hexadecane. Denaturing gradient gel electrophoresis of 16S rRNA gene segments showed that hydrocarbon amendment stimulatedRhodococcus and Nocardia populations that were displaced by Pseudomonas and Alcaligenespopulations at elevated surfactant levels. Parallel cultivation studies revealed that the Rhodococcus population can utilize hexadecane and that the Pseudomonas andAlcaligenes populations can utilize both Witconol SN70 and hexadecane for growth. The results suggest that surfactant applications necessary to achieve the CMC alter the microbial populations responsible for hydrocarbon mineralization.


Sign in / Sign up

Export Citation Format

Share Document