scholarly journals Salt Stress-Induced Loss of Iron Oxidoreduction Activities and Reacquisition of That Phenotype Depend onrusOperon Transcription inAcidithiobacillus ferridurans

2018 ◽  
Vol 84 (7) ◽  
Author(s):  
Violaine Bonnefoy ◽  
Barry M. Grail ◽  
D. Barrie Johnson

ABSTRACTThe type strain of the mineral-oxidizing acidophilic bacteriumAcidithiobacillus ferriduranswas grown in liquid medium containing elevated concentrations of sodium chloride with hydrogen as electron donor. While it became more tolerant to chloride, after about 1 year, the salt-stressed acidophile was found to have lost its ability to oxidize iron, though not sulfur or hydrogen. Detailed molecular examination revealed that this was due to an insertion sequence, ISAfd1, which belongs to the ISPepr1subgroup of the IS4family, having been inserted downstream of the two promoters PI and PII of therusoperon (which codes for the iron oxidation pathway in this acidophile), thereby preventing its transcription. The ability to oxidize iron was regained on protracted incubation of the culture inoculated onto salt-free solid medium containing ferrous iron and incubated under hydrogen. Two revertant strains were obtained. In one, the insertion sequence ISAfd1had been excised, leaving an 11-bp signature, while in the other an ∼2,500-bp insertion sequence (belonging to the IS66family) was detected in the downstream inverted repeat of ISAfd1. The transcriptional start site of therusoperon in the second revertant strain was downstream of the two ISs, due to the creation of a new “hybrid” promoter. The loss and subsequent regaining of the ability ofA. ferriduransTto reduce ferric iron were concurrent with those observed for ferrous iron oxidation, suggesting that these two traits are closely linked in this acidophile.IMPORTANCEIron-oxidizing acidophilic bacteria have primary roles in the oxidative dissolution of sulfide minerals, a process that underpins commercial mineral-processing biotechnologies (“biomining”). Most of these prokaryotes have relatively low tolerance to chloride, which limits their activities when only saline or brackish waters are available. The study showed that it was possible to adapt a typical iron-oxidizing acidophile to grow in the presence of salt concentrations similar to those in seawater, but in so doing they lost their ability to oxidize iron, though not sulfur or hydrogen. The bacterium regained its capacity for oxidizing iron when the salt stress was removed but simultaneously reverted to tolerating lower concentrations of salt. These results suggest that the bacteria that have the main roles in biomining operations could survive but become ineffective in cases where saline or brackish waters are used for irrigation.

2012 ◽  
Vol 79 (3) ◽  
pp. 951-957 ◽  
Author(s):  
Maria Liljeqvist ◽  
Olena I. Rzhepishevska ◽  
Mark Dopson

ABSTRACTThe psychrotolerant acidophileAcidithiobacillus ferrivoranshas been identified from cold environments and has been shown to use ferrous iron and inorganic sulfur compounds as its energy sources. A bioinformatic evaluation presented in this study suggested thatAcidithiobacillus ferrivoransutilized a ferrous iron oxidation pathway similar to that of the related speciesAcidithiobacillus ferrooxidans. However, the inorganic sulfur oxidation pathway was less clear, since theAcidithiobacillus ferrivoransgenome contained genes from bothAcidithiobacillus ferrooxidansandAcidithiobacillus caldusencoding enzymes whose assigned functions are redundant. Transcriptional analysis revealed that thepetA1andpetB1genes (implicated in ferrous iron oxidation) were downregulated upon growth on the inorganic sulfur compound tetrathionate but were on average 10.5-fold upregulated in the presence of ferrous iron. In contrast, expression ofcyoB1(involved in inorganic sulfur compound oxidation) was decreased 6.6-fold upon growth on ferrous iron alone. Competition assays between ferrous iron and tetrathionate withAcidithiobacillus ferrivoransSS3 precultured on chalcopyrite mineral showed a preference for ferrous iron oxidation over tetrathionate oxidation. Also, pure and mixed cultures of psychrotolerant acidophiles were utilized for the bioleaching of metal sulfide minerals in stirred tank reactors at 5 and 25°C in order to investigate the fate of ferrous iron and inorganic sulfur compounds. Solid sulfur accumulated in bioleaching cultures growing on a chalcopyrite concentrate. Sulfur accumulation halted mineral solubilization, but sulfur was oxidized after metal release had ceased. The data indicated that ferrous iron was preferentially oxidized during growth on chalcopyrite, a finding with important implications for biomining in cold environments.


2021 ◽  
Author(s):  
Lifeng Li ◽  
Zhaobao Wang

The two-component system (TCS) is a regulatory system composed of a sensor histidine kinase (HK) and a cytoplasmic response regulator (RR), which participates in the bacterial adaptation to external stimuli. Sulfur oxidation and ferrous iron oxidation are basic energy metabolism systems for chemoautotrophic acidophilic bacteria in acid mine environments. Understanding how these bacteria perceive and respond to complex environmental stimuli offers insights into oxidization mechanisms and the potential for improved applications. In this chapter, we summarized the TCSs involved in the regulation of sulfur and ferrous iron metabolic pathways in these acidophilic bacteria. In particular, we examined the role and molecular mechanism of these TCSs in the regulation of iron and sulfur oxidation in Acidithiobacillus spp.. Moreover, research perspectives on TCSs in acidophilic bacteria are discussed in this section.


2010 ◽  
Vol 56 (10) ◽  
pp. 803-808 ◽  
Author(s):  
Tatiana Y. Dinarieva ◽  
Anna E. Zhuravleva ◽  
Oksana A. Pavlenko ◽  
Iraida A. Tsaplina ◽  
Alexander I. Netrusov

The iron-oxidizing system of a moderately thermophilic, extremely acidophilic, gram-positive mixotroph, Sulfobacillus sibiricus N1T, was studied by spectroscopic, high-performance liquid chromatography and inhibitory analyses. Hemes B, A, and O were detected in membranes of S. sibiricus N1T. It is proposed that the electron transport chain from Fe2+ to O2 is terminated by 2 physiological oxidases: aa3-type cytochrome, which dominates in the early-exponential phase of growth, and bo3-type cytochrome, whose role in iron oxidation becomes more prominent upon growth of the culture. Both oxidases were sensitive to cyanide and azide. Cytochrome aa3 was more sensitive to cyanide and azide, with Ki values of 4.1 and 2.5 µmol·L–1, respectively, compared with Ki values for cytochrome bo3, which were 9.5 µmol·L–1 for cyanide and 7.0 µmol·L–1 for azide. This is the first evidence for the participation of a bo3-type oxidase in ferrous iron oxidation. The respiratory chain of the mixotroph contains, in addition to the 2 terminal oxidases, a membrane-bound cytochrome b573.


2005 ◽  
Vol 11 (2) ◽  
pp. 59-62 ◽  
Author(s):  
Dragisa Savic ◽  
Miodrag Lazic ◽  
Vlada Veljkovic ◽  
Miroslav Vrvic

The batch oxidation kinetics of ferrous iron by Acidithiobacillus ferrooxidans were examined at different oxygen transfer rates and pH in an aerated stirred tank and a bubble column. The microbial growth, oxygen consumption rate and ferrous and ferric iron were monitored during the biooxidation. A kinetic model was established on the basis of the Michaelis-Menten kinetic equation for bacterial growth and the constants estimated from experimental data (maximum specific growth rate 0.069 h-1, saturation constant 2.9 g/dm3, and biomass yield coefficient based on ferrous iron 0.003 gd.w./gFe). Values calculated from the model agreed well with the experimental ones regardless of the bioreactor type and pH conditions.


2018 ◽  
Vol 169 (10) ◽  
pp. 618-627 ◽  
Author(s):  
Sophie R. Ullrich ◽  
Anja Poehlein ◽  
Gloria Levicán ◽  
Martin Mühling ◽  
Michael Schlömann

2018 ◽  
Vol 181 ◽  
pp. 189-194
Author(s):  
Naomi J. Boxall ◽  
Ka Yu Cheng ◽  
Chris A. du Plessis ◽  
David Collinson ◽  
Christina Morris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document