scholarly journals Survival and Transmission of Potato Virus Y, Pepino Mosaic Virus, and Potato Spindle Tuber Viroid in Water

2013 ◽  
Vol 80 (4) ◽  
pp. 1455-1462 ◽  
Author(s):  
N. Mehle ◽  
I. Gutiérrez-Aguirre ◽  
N. Prezelj ◽  
D. Delić ◽  
U. Vidic ◽  
...  

ABSTRACTHydroponic systems and intensive irrigation are used widely in horticulture and thus have the potential for rapid spread of water-transmissible plant pathogens. Numerous plant viruses have been reported to occur in aqueous environments, although information on their survival and transmission is minimal, due mainly to the lack of effective detection methods and to the complexity of the required transmission experiments. We have assessed the role of water as a source of plant infection using three mechanically transmissible plant pathogens that constitute a serious threat to tomato and potato production: pepino mosaic virus (PepMV), potato virus Y (PVY), and potato spindle tuber viroid (PSTVd). PepMV remains infectious in water at 20 ± 4°C for up to 3 weeks, PVY (NTN strain) for up to 1 week, and PSTVd for up to 7 weeks. Experiments using a hydroponic system show that PepMV (Ch2 genotype) and PVY (NTN strain) can be released from plant roots into the nutrient solution and can infect healthy plants through their roots, ultimately spreading to the green parts, where they can be detected after a few months. In addition, tubers developed on plants grown in substrate watered with PSTVd-infested water were confirmed to be the source of viroid infection. Our data indicate that although well-known pathways of virus spread are more rapid than water-mediated infection, like insect or mechanical transmission through leaves, water is a route that provides a significant bridge for rapid virus/viroid spread. Consequently, water should be taken into account in future epidemiology and risk assessment studies.

2017 ◽  
Vol 75 (1) ◽  
pp. 77-85
Author(s):  
Krzysztof Treder ◽  
Joanna Chołuj ◽  
Bogumiła Zacharzewska ◽  
Mateusz Mielczarek

Abstract Potato virus Y (PVY), a type member of the genus Potyvirus (family Potyviridae), is currently the most important virus infecting the potato crop. PVY is also a dangerous pathogen of the tomato, pepper, and tobacco. The reverse transcription loop-mediated amplification (RT-LAMP) is gaining recognition as a good alternative to RT-PCR in diagnosing plant viruses. Here, we provide a detailed description of a simple protocol for fast and sensitive detection of PVY by the RT-LAMP assay, which can be easily adapted to detect other plant pathogens, harboring both RNA and DNA genomes.


2021 ◽  
Vol 1 (19) ◽  
pp. 242-244
Author(s):  
A.V. Ivanov ◽  
A.V. Zherdev ◽  
B.B. Dzantiev

Test systems have been developed for the detection of phytopathogens, combining recombinase polymerase amplification and membrane test strips. Test systems provide detection of potato virus X, potato spindle tuber viroid, potato blackleg pathogen (Dickeya solani), as well as multi-analysis of three viruses. Amplification is carried out at 37 °C. The analysis time does n ot exceed 30 min.


2018 ◽  
Vol 20 (1) ◽  
pp. 469-477 ◽  
Author(s):  
Duc H. T. Le ◽  
Eduardo Méndez-López ◽  
Chao Wang ◽  
Ulrich Commandeur ◽  
Miguel A. Aranda ◽  
...  

Plant Disease ◽  
2001 ◽  
Vol 85 (4) ◽  
pp. 447-447 ◽  
Author(s):  
X. D. Li ◽  
Y. Q. Li ◽  
H. G. Wang

Flue-cured tobacco is an important crop in Henan Province, China. During the 2000 growing season, many tobacco plants showed various degrees of mottling, mosaic, vein clearing, or vein necrosis in most of the counties. Some plants even died at an early stage of growth. A survey was conducted in May-June in several tobacco-growing counties, and the incidence of symptomatic plants in individual fields ranged from 10 to 85%. The most widely planted tobacco varieties, NC89, K326, and K346, were highly susceptible. Symptomatic plants were collected from Jiaxian and Xiangcheng counties and samples were tested by enzyme-linked immunosorbent assay for Tobacco mosaic virus (TMV), Cucumber mosaic virus (CMV), Potato virus Y (PVY), and Potato virus X (PVX). Of 65 samples tested, 21 were positive for only PVY, 16 positive for only CMV, one each was positive for only TMV or PVX. Nineteen samples were doubly infected with various combinations of these viruses and six were infected with combinations of three viruses. The causal agent(s) in the remaining sample could not be determined. In total, CMV was detected in 40 samples, PVY in 38, PVX in 10, and TMV in 7 samples. TMV and CMV used to be the most important viruses and PVY occurred only rarely. But PVY has become prevalent in Henan and in neighboring Shandong province (2). CMV and TMV were reported to be the most prevalent viruses in Shanxi (1) and Fujian Provinces (3). Because resistant varieties are not available, and mixed infections are more common, the results presented here explain why huge damage is occurring in tobacco crops in recent years. Some varieties are partially resistant to TMV and CMV but the varieties commonly grown are highly susceptible to PVY. Therefore, breeding for resistance to viruses, especially to PVY, is urgent to control the occurrence of tobacco viral diseases. References: (1) J. L. Cheng et al. Acta Tabacaria Sin. 4:43, 1998. (2) J. B. Wang et al. Chinese Tobacco Sci. 1:26, 1998. (3) L. H. Xie et al. Acta Tabacaria Sin. 2:25, 1994.


2003 ◽  
Vol 16 (10) ◽  
pp. 936-944 ◽  
Author(s):  
Neena Mitter ◽  
Emy Sulistyowati ◽  
Ralf G. Dietzgen

Post-transcriptional gene silencing (PTGS), an intrinsic plant defense mechanism, can be efficiently triggered by double stranded (ds)RNA-producing transgenes and can provide high level virus resistance by specific targeting of cognate viral RNA. The discovery of virus-encoded suppressors of PTGS led to concerns about the stability of such resistance. Here, we show that Cucumber mosaic virus (CMV) is able to suppress dsRNA-induced PTGS and the associated Potato virus Y (PVY) immunity in tobacco. CMV suppression supported only a transient PVY accumulation and did not prevent recovery of the transgenic plants from PVY infection. CMV inoculation resulted in strongly increased transgene mRNA levels due to suppression of PTGS, but accumulation of PVY-specific small interfering (si)RNA was unaffected. However, PVY accumulation in previously immune plants resulted in increased PVY siRNA levels and transgene mRNA was no longer detected, despite the presence of CMV. Transgene mRNA returned to high levels once PVY was no longer detected in CMV-infected plants. Recovered and chronically CMV-infected tissues were immune to further PVY infection.


Plant Disease ◽  
2008 ◽  
Vol 92 (12) ◽  
pp. 1701-1705 ◽  
Author(s):  
Kai-Shu Ling

In just a few years, Pepino mosaic virus (PepMV) has become a major threat to greenhouse tomato production around the world. Although tomato seed is suspected to spread the disease, its importance as an initial virus inoculum for PepMV has not been established. To determine the potential for seed transmission, a tomato seed lot highly contaminated with PepMV was used for large-scale seedling grow-out tests. None of 10,000 grow-out seedlings was infected as determined by symptom expression, enzyme-linked immunosorbent assay (ELISA), or infectivity assay on Nicotiana benthamiana. Even though PepMV was not seed transmitted on tomato, the virus was effectively transmitted to tomato and N. benthamiana seedlings through mechanical transmission with seed extract. To examine the exact location where PepMV particles accumulated on the tomato seed, seed coats and embryos were carefully isolated and tested separately by ELISA, real-time RT-PCR, and bioassay on N. benthamiana. PepMV was detected in the seed coat fraction in both immature and mature tomato seeds, but not in the embryo. However, in N. benthamiana, the virus was neither seedborne nor seed-transmitted. Because PepMV is seedborne in tomato, efficient mechanical transmission of PepMV from the virus-contaminated tomato seed to seedlings could initiate a disease epidemic in a new tomato growing area. Thus, it is important to plant certified tomato seed that has been tested free of PepMV.


Sign in / Sign up

Export Citation Format

Share Document