ANALYTICAL SYSTEMS BASED ON RECOMBINASE POLYMERASE AMPLIFICATION FOR RAPID DETECTION OF VIRAL, VIROID AND BACTERIAL PLANT PATHOGENS

2021 ◽  
Vol 1 (19) ◽  
pp. 242-244
Author(s):  
A.V. Ivanov ◽  
A.V. Zherdev ◽  
B.B. Dzantiev

Test systems have been developed for the detection of phytopathogens, combining recombinase polymerase amplification and membrane test strips. Test systems provide detection of potato virus X, potato spindle tuber viroid, potato blackleg pathogen (Dickeya solani), as well as multi-analysis of three viruses. Amplification is carried out at 37 °C. The analysis time does n ot exceed 30 min.

2015 ◽  
Vol 81 (9) ◽  
pp. 3039-3048 ◽  
Author(s):  
Stefanie Rettcher ◽  
Felicitas Jungk ◽  
Christoph Kühn ◽  
Hans-Joachim Krause ◽  
Greta Nölke ◽  
...  

ABSTRACTPlant pathogens cause major economic losses in the agricultural industry because late detection delays the implementation of measures that can prevent their dissemination. Sensitive and robust procedures for the rapid detection of plant pathogens are therefore required to reduce yield losses and the use of expensive, environmentally damaging chemicals. Here we describe a simple and portable system for the rapid detection of viral pathogens in infected plants based on immunofiltration, subsequent magnetic detection, and the quantification of magnetically labeled virus particles.Grapevine fanleaf virus(GFLV) was chosen as a model pathogen. Monoclonal antibodies recognizing the GFLV capsid protein were immobilized onto immunofiltration columns, and the same antibodies were linked to magnetic nanoparticles. GFLV was quantified by immunofiltration with magnetic labeling in a double-antibody sandwich configuration. A magnetic frequency mixing technique, in which a two-frequency magnetic excitation field was used to induce a sum frequency signal in the resonant detection coil, corresponding to the virus concentration within the immunofiltration column, was used for high-sensitivity quantification. We were able to measure GFLV concentrations in the range of 6 ng/ml to 20 μg/ml in less than 30 min. The magnetic immunoassay could also be adapted to detect other plant viruses, includingPotato virus XandTobacco mosaic virus, with detection limits of 2 to 60 ng/ml.


2005 ◽  
Vol 71 (10) ◽  
pp. 6360-6367 ◽  
Author(s):  
Marcello Donini ◽  
Chiara Lico ◽  
Selene Baschieri ◽  
Stefania Conti ◽  
Walter Magliani ◽  
...  

ABSTRACT The decapeptide killer peptide (KP) derived from the sequence of a single-chain, anti-idiotypic antibody acting as a functional internal image of a microbicidal, broad-spectrum yeast killer toxin (KT) was shown to exert a strong microbicidal activity against human pathogens. With the aim to exploit this peptide to confer resistance to plant pathogens, we assayed its antimicrobial activity against a broad spectrum of phytopathogenic bacteria and fungi. Synthetic KP exhibited antimicrobial activity in vitro towards Pseudomonas syringae, Erwinia carotovora, Botrytis cinerea, and Fusarium oxysporum. KP was also expressed in plants by using a Potato virus X (PVX)-derived vector as a fusion to the viral coat protein, yielding chimeric virus particles (CVPs) displaying the heterologous peptide. Purified CVPs showed enhanced antimicrobial activity against the above-mentioned plant pathogens and human pathogens such as Staphylococcus aureus and Candida albicans. Moreover, in vivo assays designed to challenge KP-expressing plants (as CVPs) with Pseudomonas syringae pv. tabaci showed enhanced resistance to bacterial attack. The results indicate that the PVX-based display system is a high-yield, rapid, and efficient method to produce and evaluate antimicrobial peptides in plants, representing a milestone for the large-scale production of high-added-value peptides through molecular farming. Moreover, KP is a promising molecule to be stably engineered in plants to confer broad-spectrum resistance to phytopathogens.


Plant Disease ◽  
1999 ◽  
Vol 83 (12) ◽  
pp. 1116-1121 ◽  
Author(s):  
Jorge M. Vivanco ◽  
Maddalena Querci ◽  
Luis F. Salazar

Extracts of Mirabilis jalapa (Nyctaginaceae), containing a ribosome inactivating protein (RIP) called Mirabilis antiviral protein (MAP), were tested against infection by potato virus X, potato virus Y, potato leaf roll virus, and potato spindle tuber viroid. Root extracts of M. jalapa sprayed on test plants 24 h before virus or viroid inoculation inhibited infection by almost 100%, as corroborated by infectivity assays and the nucleic acid spot hybridization test. Antiviral activity of MAP extracts was observed against mechanically transmitted viruses but not against aphid-transmitted viruses. Purified MAP showed the same antiviral effect as the crude extracts.


2001 ◽  
Vol 82 (6) ◽  
pp. 1491-1497 ◽  
Author(s):  
Yan Zhao ◽  
Robert A. Owens ◽  
Rosemarie W. Hammond

Potato spindle tuber viroid (PSTVd) is a covalently closed circular RNA molecule of 359 nucleotides that replicates within the nucleus of host cells. To determine how this small, highly structured RNA enters the nucleus, we have developed a virus-based, whole plant in vivo assay that uses green fluorescent protein (GFP) as the reporter molecule. The coding region of GFP was interrupted by insertion of an intron derived from the intervening sequence 2 of the potato ST-LS1 gene. A cDNA copy of the complete PSTVd genome was, in turn, embedded within the intron, and this construct was delivered into Nicotiana benthamiana plants via a vector based on Potato virus X. The intron-containing GFP subgenomic RNA synthesized during virus infection cannot produce a functional GFP unless the RNA is imported into the nucleus, where the intron can be removed and the spliced RNA returned to the cytoplasm. The appearance of green fluorescence in leaf tissues inoculated with constructs containing a full-length PSTVd molecule embedded in the intron indicates that nuclear import and RNA splicing events did occur.


2012 ◽  
Author(s):  
Jianming Bai ◽  
Xiaoling Chen ◽  
Xinxiong Lu ◽  
Huachun Guo ◽  
Xia Xin ◽  
...  

Plant Disease ◽  
2008 ◽  
Vol 92 (5) ◽  
pp. 730-740 ◽  
Author(s):  
Bright Agindotan ◽  
Keith L. Perry

A macroarray was developed for the detection of 11 potato viruses and Potato spindle tuber viroid. The 11 viruses detected included those commonly found or tested for in North American potato seed certification programs: Alfalfa mosaic virus, Cucumber mosaic virus, Potato mop top virus, Potato leafroll virus, Potato latent virus, Potato virus A, Potato virus M, Potato virus S, Potato virus X, Potato virus Y, and Tobacco rattle virus. These viruses were detected using oligonucleotide 70-mer probes and labeled targets prepared by a random primed amplification procedure. Potato plants analyzed included those infected with 12 reference virus stocks and 36 field isolates. Results from the macroarray were entirely consistent with those obtained using a standard serological assay (enzyme-linked immunosorbent assay). Four isolates of Potato spindle tuber viroid, in mixed infection with one or more viruses, also were detected in the array, although strong hybridization signals required amplification with viroid-specific primers in combination with anchored-random primers. In individual plants, up to four viruses, or a viroid plus two viruses, were detected, with no apparent competition or inhibition. Macroarrays are a cost-effective approach to the simultaneous diagnostic detection of multiple pathogens from infected plants.


2013 ◽  
Vol 80 (4) ◽  
pp. 1455-1462 ◽  
Author(s):  
N. Mehle ◽  
I. Gutiérrez-Aguirre ◽  
N. Prezelj ◽  
D. Delić ◽  
U. Vidic ◽  
...  

ABSTRACTHydroponic systems and intensive irrigation are used widely in horticulture and thus have the potential for rapid spread of water-transmissible plant pathogens. Numerous plant viruses have been reported to occur in aqueous environments, although information on their survival and transmission is minimal, due mainly to the lack of effective detection methods and to the complexity of the required transmission experiments. We have assessed the role of water as a source of plant infection using three mechanically transmissible plant pathogens that constitute a serious threat to tomato and potato production: pepino mosaic virus (PepMV), potato virus Y (PVY), and potato spindle tuber viroid (PSTVd). PepMV remains infectious in water at 20 ± 4°C for up to 3 weeks, PVY (NTN strain) for up to 1 week, and PSTVd for up to 7 weeks. Experiments using a hydroponic system show that PepMV (Ch2 genotype) and PVY (NTN strain) can be released from plant roots into the nutrient solution and can infect healthy plants through their roots, ultimately spreading to the green parts, where they can be detected after a few months. In addition, tubers developed on plants grown in substrate watered with PSTVd-infested water were confirmed to be the source of viroid infection. Our data indicate that although well-known pathways of virus spread are more rapid than water-mediated infection, like insect or mechanical transmission through leaves, water is a route that provides a significant bridge for rapid virus/viroid spread. Consequently, water should be taken into account in future epidemiology and risk assessment studies.


Sign in / Sign up

Export Citation Format

Share Document