scholarly journals Isolation and characterization of a lipolytic bacterium capable of growing in a low-water-content oil-water emulsion.

1991 ◽  
Vol 57 (6) ◽  
pp. 1740-1745 ◽  
Author(s):  
Y Shabtai
2010 ◽  
Vol 49 (24) ◽  
pp. 12756-12761 ◽  
Author(s):  
Ajay Mandal ◽  
Abhijit Samanta ◽  
Achinta Bera ◽  
Keka Ojha

Author(s):  
Л. І. Ниркова ◽  
С. О. Осадчук ◽  
Ю. В. Борисенко ◽  
Ф. М. Макатьора

Development of methodology for research and evaluation of internal corrosion of low-carbon steel pipeline along the bottom moving line in a hydrocarbon medium with different water content. Visual inspection and polarization resistance method were used. Based on the analysis of the peculiarities of internal corrosion of oil pipelines, the methodology of its research has been developed. A laboratory testing facility is proposed and manufactured, which simulates the inner surface of the pipeline. The design of the polarization resistance sensor was improved by applying a moisture-retaining layer, which allowed to determine the corrosion rate in the oil-water emulsion. To increase the sensitivity of the sensor in this environment, additives are introduced into the moisture-retaining layer, which promote the absorption and retention of moisture. The influence of various additives on the sensitivity of the sensor has been studied, the method of applying the moisture-retaining layer, which is suitable for use, has been worked out. The minimum concentration of the additive was determined, at which a solid moisture-retaining layer resistant to the action of moisture was obtained. The methodology of research of internal corrosion of the oil pipeline along the bottom moving line on the basis of modeling in laboratory conditions of a surface of a pipe is offered and substantiated. A laboratory testing facility was made and the design of the polarization resistance sensor was improved, which made it possible to perform measurements in oil-water emulsion. This allowed to expand the scope of the method of polarization resistance for oil environments with low water content (from 50% to 5%). The design of the electrochemical two-electrode sensor of polarization resistance with the cosurface arrangement of electrodes on which the moisture-retaining layer is put and its composition is defined is improved. A solid layer resistant to air moisture is obtained. The sensor with a moisture-retaining layer is suitable for use in oil-water emulsion with water content from 50% to 5%.


Author(s):  
Manabu Fuchihata ◽  
Shuko Takeda ◽  
Tamio Ida

Microexplosions of light oil-water emulsified fuel droplets were successfully documented using a high-speed video camera with laser illumination. The local frequency of the explosion occurrence, temperature profile and exhaust gas emissions were measured in spray flames of water-in-oil type emulsion formed using an air-assist atomizer with a ring pilot burner. Those results indicate that the flame structure changes as the water droplet diameter in the emulsion fuel was varied, even if the fuel components and their fractions were same. When the fuel includes the water droplet, whose median diameter was about 75μm, HC and CO emission were reduced as compared to those for the fuel of smaller water droplet content. It is probable that if the water droplet diameter is uniform, avalanching microexplosions occur at certain local region in the flame, and the water content vaporizes almost at once and extinguishes the flame. It leads to HC and CO emission increase. When the water droplet diameters are large, atomizer atomizes those; therefore, emulsion droplets include various size of water droplet in the flame. Consequently, the avalanching microexplosion occurrence is avoided, and HC and CO emissions are reduced.


2006 ◽  
Vol 27 (3) ◽  
pp. 295-305 ◽  
Author(s):  
Øystein Brandal ◽  
Ann‐Mari D. Hanneseth ◽  
Pål V. Hemmingsen ◽  
Johan Sjöblom ◽  
Sunghwan Kim ◽  
...  

2018 ◽  
Vol 1 (1) ◽  
pp. 31-37
Author(s):  
Ragupathy Dhanusuraman ◽  
E Muthusankar ◽  
D Kamalakannan

Author(s):  
G H Smith ◽  
E H Owens ◽  
I Reading

The proposal, from the International Maritime Organisation (IMO), to limit further the emissions from marine diesel engines came into effect in May 2005. This has considerable consequence for the management and operation of ship diesel plant. One method that has been shown to limit the emissions of NOx is the addition of quantities of water as an emulsion into the heavy fuel oil (HFO) before it is injected into the burners. This reduces the peak combustion temperature, improves atomization of the diesel fuel, and can reduce emissions by as much as 30 per cent. A key component for an efficient and cost-effective system is a method to monitor the water content to an accuracy sufficient to allow the mix to be adjusted to meet the needs of the varying engine loads. This paper briefly presents the environmental, legislative, and technical background. The principle aim is, however, to describe the experimental work examining the application of an in-line optical sensor. Laboratory tests on HFO, having a room temperature viscosity of 180 cSt, were undertaken at two nominal temperatures, 80 and 130°. These tests provide empirical evidence that an in-line optical monitor could determine water fraction within the emulsion to the accuracy requirement (better than 3 per cent) and over the operational water content range (15-33 per cent water to oil). A hypothesis is presented to explain the changes in the optical scattering characteristics of the oil/water emulsion with water content. Additional results are presented that demonstrate the use of two commercial viscometers to quantify the oil/water fraction. It was concluded that the measurement of emulsion viscosity can be related to water fraction but that the current instruments do not have the required resolution and have serious limitations due to their temperature sensitivity. A key requirement for further work is that the scattering properties of the emulsion be investigated in greater detail. In particular a test must be undertaken at temperatures in the region of 170°. Also, the instrument must be developed to cope with the wide variety of diesel fuels that a ship may take on at bunkering facilities around the world.


Sign in / Sign up

Export Citation Format

Share Document