scholarly journals Metabolic by-products of anaerobic toluene degradation by sulfate-reducing enrichment cultures.

1992 ◽  
Vol 58 (9) ◽  
pp. 3192-3195 ◽  
Author(s):  
H R Beller ◽  
M Reinhard ◽  
D Grbić-Galić
Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 511 ◽  
Author(s):  
Wenjun Liang ◽  
Huipin Sun ◽  
Xiujuan Shi ◽  
Yuxue Zhu

In order to make full use of the heat in nonthermal plasma systems and decrease the generation of by-products, a reverse-flow nonthermal plasma reactor coupled with catalyst was used for the abatement of toluene. In this study, the toluene degradation performance of different reactors was compared under the same conditions. The mechanism of toluene abatement by nonthermal plasma coupled with catalyst was explored, combined with the generation of ozone (O3), NO2, and organic by-products during the reaction process. It was found that a long reverse cycle time of the reactor and a short residence time of toluene decreased the internal reactor temperature, which was not beneficial for the degradation of toluene. Compared with the dielectric barrier discharge (DBD) reactor, toluene degradation efficiency in the double dielectric barrier discharge (DDBD) reactor was improved at the same discharge energy level, but the concentrations of NO2 and O3 in the effluent were relatively high; this was improved after the introduction of a catalyst. In the reverse-flow nonthermal plasma reactor coupled with catalyst, the CO2 selectivity was the highest, while the selectivity and amount of NO2 was the lowest and aromatics, acids, and ketones were the main gaseous organic by-products in the effluent. The reverse-flow DBD-catalyst reactor was successful in decreasing organic by-products, while the types of organic by-products in the DDBD reactor were much more than those in the DBD reactor.


2008 ◽  
Vol 57 (3) ◽  
pp. 439-444 ◽  
Author(s):  
D. Z. Sousa ◽  
M. A. Pereira ◽  
J. I. Alves ◽  
H. Smidt ◽  
A. J. M Stams ◽  
...  

This paper reviews recent results obtained on long-chain fatty acids (LCFA) anaerobic degradation. Two LCFA were used as model substrates: oleate, a mono-unsaturated LCFA, and palmitate, a saturated LCFA, both abundant in LCFA-rich wastewaters. 16S rRNA gene analysis of sludge samples submitted to continuous oleate- and palmitate-feeding followed by batch degradation of the accumulated LCFA demonstrated that bacterial communities were dominated by members of the Clostridiaceae and Syntrophomonadaceae families. Archaeal populations were mainly comprised of hydrogen-consuming microorganisms belonging to the genus Methanobacterium, and acetate-utilizers from the genera Methanosaeta and Methanosarcina. Enrichment cultures growing on oleate and palmitate, in the absence or presence of sulfate, gave more insight into the major players involved in the degradation of unsaturated and saturated LCFA. Syntrophomonas-related species were identified as predominant microorganisms in all the enrichment cultures. Microorganisms clustering within the family Syntrophobacteraceae were identified in the methanogenic and sulfate-reducing enrichments growing on palmitate. Distinct bacterial consortia were developed in oleate and palmitate enrichments, and observed differences might be related to the different degrees of saturation of these two LCFA. A new obligately syntrophic bacterium, Syntrophomonas zehnderi, was isolated from an oleate-degrading culture and its presence in oleate-degrading sludges detected by 16S rRNA gene cloning and sequencing.


2006 ◽  
Vol 72 (5) ◽  
pp. 3759-3762 ◽  
Author(s):  
Anna H. Kaksonen ◽  
Jason J. Plumb ◽  
Wendy J. Robertson ◽  
Stefan Spring ◽  
Peter Schumann ◽  
...  

ABSTRACT Thermophilic sulfate-reducing bacteria were enriched from samples obtained from a geothermal underground mine in Japan. The enrichment cultures contained bacteria affiliated with the genera Desulfotomaculum, Thermanaeromonas, Thermincola, Thermovenabulum, Moorella, “Natronoanaerobium,” and Clostridium. Two novel thermophilic sulfate-reducing strains, RL50JIII and RL80JIV, affiliated with the genera Desulfotomaculum and Thermanaeromonas, respectively, were isolated.


2009 ◽  
Vol 100 (4) ◽  
pp. 1622-1627 ◽  
Author(s):  
Jae-Jung Ko ◽  
Yoshihisa Shimizu ◽  
Kazuhiro Ikeda ◽  
Seog-Ku Kim ◽  
Chul-Hwi Park ◽  
...  

2001 ◽  
Vol 67 (10) ◽  
pp. 4842-4849 ◽  
Author(s):  
Barbara Morasch ◽  
Hans H. Richnow ◽  
Bernhard Schink ◽  
Rainer U. Meckenstock

ABSTRACT Primary features of hydrogen and carbon isotope fractionation during toluene degradation were studied to evaluate if analysis of isotope signatures can be used as a tool to monitor biodegradation in contaminated aquifers. D/H hydrogen isotope fractionation during microbial degradation of toluene was measured by gas chromatography. Per-deuterated toluene-d 8 and nonlabeled toluene were supplied in equal amounts as growth substrates, and kinetic isotope fractionation was calculated from the shift of the molar ratios of toluene-d 8 and nondeuterated toluene. The D/H isotope fractionation varied slightly for sulfate-reducing strain TRM1 (slope of curve [b] = −1.219), Desulfobacterium cetonicum(b = −1.196), Thauera aromatica(b = −0.816), and Geobacter metallireducens (b = −1.004) and was greater for the aerobic bacterium Pseudomonas putidamt-2 (b = −2.667). The D/H isotope fractionation was 3 orders of magnitude greater than the13C/12C carbon isotope fractionation reported previously. Hydrogen isotope fractionation with nonlabeled toluene was 1.7 and 6 times less than isotope fractionation with per-deuterated toluene-d 8 and nonlabeled toluene for sulfate-reducing strain TRM1 (b = −0.728) andD. cetonicum (b = −0.198), respectively. Carbon and hydrogen isotope fractionation during toluene degradation by D. cetonicum remained constant over a growth temperature range of 15 to 37°C but varied slightly during degradation by P. putida mt-2, which showed maximum hydrogen isotope fractionation at 20°C (b = −4.086) and minimum fractionation at 35°C (b = −2.138). D/H isotope fractionation was observed only if the deuterium label was located at the methyl group of the toluene molecule which is the site of the initial enzymatic attack on the substrate by the bacterial strains investigated in this study. Use of ring-labeled toluene-d 5 in combination with nondeuterated toluene did not lead to significant D/H isotope fractionation. The activity of the first enzyme in the anaerobic toluene degradation pathway, benzylsuccinate synthase, was measured in cell extracts of D. cetonicum with an initial activity of 3.63 mU (mg of protein)−1. The D/H isotope fractionation (b = −1.580) was 30% greater than that in growth experiments with D. cetonicum. Mass spectroscopic analysis of the product benzylsuccinate showed that H atoms abstracted from the toluene molecules by the enzyme were retained in the same molecules after the product was released. Our findings revealed that the use of deuterium-labeled toluene was appropriate for studying basic features of D/H isotope fractionation. Similar D/H fractionation factors for toluene degradation by anaerobic bacteria, the lack of significant temperature dependence, and the strong fractionation suggest that analysis of D/H fractionation can be used as a sensitive tool to assess degradation activities. Identification of the first enzyme reaction in the pathway as the major fractionating step provides a basis for linking observed isotope fractionation to biochemical reactions.


Sign in / Sign up

Export Citation Format

Share Document